resnet_cifar_main.py 10.1 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Jose Baiocchi's avatar
Jose Baiocchi committed
21
from absl import app
22
from absl import flags
23
from absl import logging
Jose Baiocchi's avatar
Jose Baiocchi committed
24
import numpy as np
25
import tensorflow as tf
26
from official.benchmark.models import cifar_preprocessing
27
from official.benchmark.models import resnet_cifar_model
Hongkun Yu's avatar
Hongkun Yu committed
28
from official.benchmark.models import synthetic_util
29
30
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils
Toby Boyd's avatar
Toby Boyd committed
31
from official.utils.misc import keras_utils
32
from official.vision.image_classification.resnet import common
33
34


35
36
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
37
38
]

39

40
41
42
43
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
44
  """Handles linear scaling rule and LR decay.
45

46
47
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
48
49
50
51

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
52
53
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
54
55
56
57

  Returns:
    Adjusted learning rate.
  """
58
  del current_batch, batches_per_epoch  # not used
59
  initial_learning_rate = common.BASE_LEARNING_RATE * batch_size / 128
60
  learning_rate = initial_learning_rate
61
  for mult, start_epoch in LR_SCHEDULE:
62
63
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
64
65
66
67
68
    else:
      break
  return learning_rate


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Attributes:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, steps_per_epoch):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.steps_per_epoch = steps_per_epoch
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
    """Executes before step begins."""
    lr = self.schedule(self.epochs,
                       batch,
                       self.steps_per_epoch,
                       self.batch_size)
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
      self.model.optimizer.learning_rate = lr  # lr should be a float here
      self.prev_lr = lr
104
      logging.debug(
105
106
107
108
          'Epoch %05d Batch %05d: LearningRateBatchScheduler '
          'change learning rate to %s.', self.epochs, batch, lr)


Shining Sun's avatar
Shining Sun committed
109
110
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
111
112
113
114
115
116

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
117
118
119

  Returns:
    Dictionary of training and eval stats.
120
  """
121
  keras_utils.set_session_config(
122
      enable_xla=flags_obj.enable_xla)
123
124
125

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
126
127
128
129
130
    keras_utils.set_gpu_thread_mode_and_count(
        per_gpu_thread_count=flags_obj.per_gpu_thread_count,
        gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
        num_gpus=flags_obj.num_gpus,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads)
131
  common.set_cudnn_batchnorm_mode()
132

133
134
135
136
137
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

138
139
  data_format = flags_obj.data_format
  if data_format is None:
140
141
    data_format = ('channels_first' if tf.config.list_physical_devices('GPU')
                   else 'channels_last')
142
  tf.keras.backend.set_image_data_format(data_format)
143

144
145
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
146
147
148
      num_gpus=flags_obj.num_gpus,
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs)
149

150
151
152
153
154
155
156
157
  if strategy:
    # flags_obj.enable_get_next_as_optional controls whether enabling
    # get_next_as_optional behavior in DistributedIterator. If true, last
    # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
        flags_obj.enable_get_next_as_optional
    )

158
  strategy_scope = distribution_utils.get_strategy_scope(strategy)
159

160
  if flags_obj.use_synthetic_data:
Hongkun Yu's avatar
Hongkun Yu committed
161
    synthetic_util.set_up_synthetic_data()
162
    input_fn = common.get_synth_input_fn(
163
164
165
166
        height=cifar_preprocessing.HEIGHT,
        width=cifar_preprocessing.WIDTH,
        num_channels=cifar_preprocessing.NUM_CHANNELS,
        num_classes=cifar_preprocessing.NUM_CLASSES,
167
168
        dtype=flags_core.get_tf_dtype(flags_obj),
        drop_remainder=True)
169
  else:
Hongkun Yu's avatar
Hongkun Yu committed
170
    synthetic_util.undo_set_up_synthetic_data()
171
    input_fn = cifar_preprocessing.input_fn
Shining Sun's avatar
Shining Sun committed
172
173
174
175

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
176
      batch_size=flags_obj.batch_size,
177
      parse_record_fn=cifar_preprocessing.parse_record,
178
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
179
180
181
182
183
      dtype=dtype,
      # Setting drop_remainder to avoid the partial batch logic in normalization
      # layer, which triggers tf.where and leads to extra memory copy of input
      # sizes between host and GPU.
      drop_remainder=(not flags_obj.enable_get_next_as_optional))
184
185
186
187
188
189
190

  eval_input_dataset = None
  if not flags_obj.skip_eval:
    eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
191
        parse_record_fn=cifar_preprocessing.parse_record)
192

193
194
195
196
197
198
199
200
201
202
  steps_per_epoch = (
      cifar_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
  lr_schedule = 0.1
  if flags_obj.use_tensor_lr:
    initial_learning_rate = common.BASE_LEARNING_RATE * flags_obj.batch_size / 128
    lr_schedule = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
        boundaries=list(p[1] * steps_per_epoch for p in LR_SCHEDULE),
        values=[initial_learning_rate] +
        list(p[0] * initial_learning_rate for p in LR_SCHEDULE))

Shining Sun's avatar
Shining Sun committed
203
  with strategy_scope:
204
    optimizer = common.get_optimizer(lr_schedule)
205
    model = resnet_cifar_model.resnet56(classes=cifar_preprocessing.NUM_CLASSES)
206
207
208
209
210
211
    model.compile(
        loss='sparse_categorical_crossentropy',
        optimizer=optimizer,
        metrics=(['sparse_categorical_accuracy']
                 if flags_obj.report_accuracy_metrics else None),
        run_eagerly=flags_obj.run_eagerly)
Shining Sun's avatar
Shining Sun committed
212

Shining Sun's avatar
Shining Sun committed
213
214
  train_epochs = flags_obj.train_epochs

215
  callbacks = common.get_callbacks()
216
217
218
219
220
221
222

  if not flags_obj.use_tensor_lr:
    lr_callback = LearningRateBatchScheduler(
        schedule=learning_rate_schedule,
        batch_size=flags_obj.batch_size,
        steps_per_epoch=steps_per_epoch)
    callbacks.append(lr_callback)
Zongwei Zhou's avatar
Zongwei Zhou committed
223
224
225
226

  # if mutliple epochs, ignore the train_steps flag.
  if train_epochs <= 1 and flags_obj.train_steps:
    steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
Shining Sun's avatar
Shining Sun committed
227
228
    train_epochs = 1

229
  num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
230
231
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
232
233
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
234
235
236
237
    if flags_obj.set_learning_phase_to_train:
      # TODO(haoyuzhang): Understand slowdown of setting learning phase when
      # not using distribution strategy.
      tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
238
239
240
    num_eval_steps = None
    validation_data = None

241
242
243
244
245
246
  if not strategy and flags_obj.explicit_gpu_placement:
    # TODO(b/135607227): Add device scope automatically in Keras training loop
    # when not using distribition strategy.
    no_dist_strat_device = tf.device('/device:GPU:0')
    no_dist_strat_device.__enter__()

247
  history = model.fit(train_input_dataset,
248
                      epochs=train_epochs,
Zongwei Zhou's avatar
Zongwei Zhou committed
249
                      steps_per_epoch=steps_per_epoch,
250
                      callbacks=callbacks,
251
252
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
253
                      validation_freq=flags_obj.epochs_between_evals,
254
                      verbose=2)
255
  eval_output = None
256
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
257
258
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
259
                                 verbose=2)
260
261
262
263

  if not strategy and flags_obj.explicit_gpu_placement:
    no_dist_strat_device.__exit__()

264
  stats = common.build_stats(history, eval_output, callbacks)
265
  return stats
266

267

268
def define_cifar_flags():
269
  common.define_keras_flags(dynamic_loss_scale=False)
270
271
272
273
274
275
276

  flags_core.set_defaults(data_dir='/tmp/cifar10_data/cifar-10-batches-bin',
                          model_dir='/tmp/cifar10_model',
                          epochs_between_evals=10,
                          batch_size=128)


277
def main(_):
278
  return run(flags.FLAGS)
279
280
281


if __name__ == '__main__':
282
  logging.set_verbosity(logging.INFO)
283
  define_cifar_flags()
Jose Baiocchi's avatar
Jose Baiocchi committed
284
  app.run(main)