resnet_cifar_main.py 10.3 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import numpy as np
Hongkun Yu's avatar
Hongkun Yu committed
22
from absl import app as absl_app
23
from absl import flags
24
import tensorflow as tf
25
from official.benchmark.models import resnet_cifar_model
26
27
28
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
Toby Boyd's avatar
Toby Boyd committed
29
from official.utils.misc import keras_utils
30
31
from official.vision.image_classification import cifar_preprocessing
from official.vision.image_classification import common
32
33


34
35
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
36
37
]

38

39
40
41
42
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
43
  """Handles linear scaling rule and LR decay.
44

45
46
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
47
48
49
50

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
51
52
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
53
54
55
56

  Returns:
    Adjusted learning rate.
  """
57
  del current_batch, batches_per_epoch  # not used
58
  initial_learning_rate = common.BASE_LEARNING_RATE * batch_size / 128
59
  learning_rate = initial_learning_rate
60
  for mult, start_epoch in LR_SCHEDULE:
61
62
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
63
64
65
66
67
    else:
      break
  return learning_rate


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Attributes:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, steps_per_epoch):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.steps_per_epoch = steps_per_epoch
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
    """Executes before step begins."""
    lr = self.schedule(self.epochs,
                       batch,
                       self.steps_per_epoch,
                       self.batch_size)
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
      self.model.optimizer.learning_rate = lr  # lr should be a float here
      self.prev_lr = lr
      tf.compat.v1.logging.debug(
          'Epoch %05d Batch %05d: LearningRateBatchScheduler '
          'change learning rate to %s.', self.epochs, batch, lr)


Shining Sun's avatar
Shining Sun committed
108
109
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
110
111
112
113
114
115

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
116
117
118

  Returns:
    Dictionary of training and eval stats.
119
  """
120
121
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
122
      enable_xla=flags_obj.enable_xla)
123
124
125

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
126
127
128
129
130
    keras_utils.set_gpu_thread_mode_and_count(
        per_gpu_thread_count=flags_obj.per_gpu_thread_count,
        gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
        num_gpus=flags_obj.num_gpus,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads)
131
  common.set_cudnn_batchnorm_mode()
132

133
134
135
136
137
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

138
139
140
141
142
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)
143

144
145
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
146
147
148
      num_gpus=flags_obj.num_gpus,
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs)
149

150
151
152
153
154
155
156
157
  if strategy:
    # flags_obj.enable_get_next_as_optional controls whether enabling
    # get_next_as_optional behavior in DistributedIterator. If true, last
    # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
        flags_obj.enable_get_next_as_optional
    )

158
  strategy_scope = distribution_utils.get_strategy_scope(strategy)
159

160
  if flags_obj.use_synthetic_data:
161
    distribution_utils.set_up_synthetic_data()
162
    input_fn = common.get_synth_input_fn(
163
164
165
166
        height=cifar_preprocessing.HEIGHT,
        width=cifar_preprocessing.WIDTH,
        num_channels=cifar_preprocessing.NUM_CHANNELS,
        num_classes=cifar_preprocessing.NUM_CLASSES,
167
168
        dtype=flags_core.get_tf_dtype(flags_obj),
        drop_remainder=True)
169
  else:
170
    distribution_utils.undo_set_up_synthetic_data()
171
    input_fn = cifar_preprocessing.input_fn
Shining Sun's avatar
Shining Sun committed
172
173
174
175

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
176
      batch_size=flags_obj.batch_size,
177
      parse_record_fn=cifar_preprocessing.parse_record,
178
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
179
180
181
182
183
      dtype=dtype,
      # Setting drop_remainder to avoid the partial batch logic in normalization
      # layer, which triggers tf.where and leads to extra memory copy of input
      # sizes between host and GPU.
      drop_remainder=(not flags_obj.enable_get_next_as_optional))
184
185
186
187
188
189
190

  eval_input_dataset = None
  if not flags_obj.skip_eval:
    eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
191
        parse_record_fn=cifar_preprocessing.parse_record)
192

193
194
195
196
197
198
199
200
201
202
  steps_per_epoch = (
      cifar_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
  lr_schedule = 0.1
  if flags_obj.use_tensor_lr:
    initial_learning_rate = common.BASE_LEARNING_RATE * flags_obj.batch_size / 128
    lr_schedule = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
        boundaries=list(p[1] * steps_per_epoch for p in LR_SCHEDULE),
        values=[initial_learning_rate] +
        list(p[0] * initial_learning_rate for p in LR_SCHEDULE))

Shining Sun's avatar
Shining Sun committed
203
  with strategy_scope:
204
    optimizer = common.get_optimizer(lr_schedule)
205
    model = resnet_cifar_model.resnet56(classes=cifar_preprocessing.NUM_CLASSES)
206
207
208
209
210
211
    model.compile(
        loss='sparse_categorical_crossentropy',
        optimizer=optimizer,
        metrics=(['sparse_categorical_accuracy']
                 if flags_obj.report_accuracy_metrics else None),
        run_eagerly=flags_obj.run_eagerly)
Shining Sun's avatar
Shining Sun committed
212

Shining Sun's avatar
Shining Sun committed
213
214
  train_epochs = flags_obj.train_epochs

215
216
217
218
219
220
221
222
  callbacks = common.get_callbacks(steps_per_epoch)

  if not flags_obj.use_tensor_lr:
    lr_callback = LearningRateBatchScheduler(
        schedule=learning_rate_schedule,
        batch_size=flags_obj.batch_size,
        steps_per_epoch=steps_per_epoch)
    callbacks.append(lr_callback)
Zongwei Zhou's avatar
Zongwei Zhou committed
223
224
225
226

  # if mutliple epochs, ignore the train_steps flag.
  if train_epochs <= 1 and flags_obj.train_steps:
    steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
Shining Sun's avatar
Shining Sun committed
227
228
    train_epochs = 1

229
  num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
230
231
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
232
233
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
234
235
236
237
    if flags_obj.set_learning_phase_to_train:
      # TODO(haoyuzhang): Understand slowdown of setting learning phase when
      # not using distribution strategy.
      tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
238
239
240
    num_eval_steps = None
    validation_data = None

241
242
243
244
245
246
  if not strategy and flags_obj.explicit_gpu_placement:
    # TODO(b/135607227): Add device scope automatically in Keras training loop
    # when not using distribition strategy.
    no_dist_strat_device = tf.device('/device:GPU:0')
    no_dist_strat_device.__enter__()

247
  history = model.fit(train_input_dataset,
248
                      epochs=train_epochs,
Zongwei Zhou's avatar
Zongwei Zhou committed
249
                      steps_per_epoch=steps_per_epoch,
250
                      callbacks=callbacks,
251
252
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
253
                      validation_freq=flags_obj.epochs_between_evals,
254
                      verbose=2)
255
  eval_output = None
256
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
257
258
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
259
                                 verbose=2)
260
261
262
263

  if not strategy and flags_obj.explicit_gpu_placement:
    no_dist_strat_device.__exit__()

264
  stats = common.build_stats(history, eval_output, callbacks)
265
  return stats
266

267

268
def define_cifar_flags():
269
  common.define_keras_flags(dynamic_loss_scale=False)
270
271
272
273
274
275
276

  flags_core.set_defaults(data_dir='/tmp/cifar10_data/cifar-10-batches-bin',
                          model_dir='/tmp/cifar10_model',
                          epochs_between_evals=10,
                          batch_size=128)


277
def main(_):
278
  with logger.benchmark_context(flags.FLAGS):
279
    return run(flags.FLAGS)
280
281
282


if __name__ == '__main__':
283
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
284
  define_cifar_flags()
285
  absl_app.run(main)