transformer_main.py 26 KB
Newer Older
Katherine Wu's avatar
Katherine Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
16
17
18
19
"""Train and evaluate the Transformer model.

See README for description of setting the training schedule and evaluating the
BLEU score.
"""
Katherine Wu's avatar
Katherine Wu committed
20
21
22
23
24
25
26
27
28
29

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import tempfile

# pylint: disable=g-bad-import-order
from six.moves import xrange  # pylint: disable=redefined-builtin
30
31
from absl import app as absl_app
from absl import flags
Katherine Wu's avatar
Katherine Wu committed
32
33
34
35
36
37
38
39
40
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.transformer import compute_bleu
from official.transformer import translate
from official.transformer.model import model_params
from official.transformer.model import transformer
from official.transformer.utils import dataset
from official.transformer.utils import metrics
41
from official.transformer.utils import schedule
Katherine Wu's avatar
Katherine Wu committed
42
from official.transformer.utils import tokenizer
43
from official.utils.accelerator import tpu as tpu_util
44
from official.utils.export import export
45
46
47
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
48
from official.utils.misc import distribution_utils
49
50
51
from official.utils.misc import model_helpers

PARAMS_MAP = {
52
53
54
    "tiny": model_params.TINY_PARAMS,
    "base": model_params.BASE_PARAMS,
    "big": model_params.BIG_PARAMS,
55
}
56
57


Katherine Wu's avatar
Katherine Wu committed
58
59
DEFAULT_TRAIN_EPOCHS = 10
INF = int(1e9)
60
BLEU_DIR = "bleu"
Katherine Wu's avatar
Katherine Wu committed
61

62
63
64
65
66
67
# Dictionary containing tensors that are logged by the logging hooks. Each item
# maps a string to the tensor name.
TENSORS_TO_LOG = {
    "learning_rate": "model/get_train_op/learning_rate/learning_rate",
    "cross_entropy_loss": "model/cross_entropy"}

Katherine Wu's avatar
Katherine Wu committed
68
69
70
71
72
73
74
75
76

def model_fn(features, labels, mode, params):
  """Defines how to train, evaluate and predict from the transformer model."""
  with tf.variable_scope("model"):
    inputs, targets = features, labels

    # Create model and get output logits.
    model = transformer.Transformer(params, mode == tf.estimator.ModeKeys.TRAIN)

77
    logits = model(inputs, targets)
Katherine Wu's avatar
Katherine Wu committed
78
79
80
81

    # When in prediction mode, the labels/targets is None. The model output
    # is the prediction
    if mode == tf.estimator.ModeKeys.PREDICT:
82
83
      if params["use_tpu"]:
        raise NotImplementedError("Prediction is not yet supported on TPUs.")
Katherine Wu's avatar
Katherine Wu committed
84
85
      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.PREDICT,
86
87
88
89
          predictions=logits,
          export_outputs={
              "translate": tf.estimator.export.PredictOutput(logits)
          })
Katherine Wu's avatar
Katherine Wu committed
90

91
92
93
94
95
96
97
98
    # Explicitly set the shape of the logits for XLA (TPU). This is needed
    # because the logits are passed back to the host VM CPU for metric
    # evaluation, and the shape of [?, ?, vocab_size] is too vague. However
    # it is known from Transformer that the first two dimensions of logits
    # are the dimensions of targets. Note that the ambiguous shape of logits is
    # not a problem when computing xentropy, because padded_cross_entropy_loss
    # resolves the shape on the TPU.
    logits.set_shape(targets.shape.as_list() + logits.shape.as_list()[2:])
Katherine Wu's avatar
Katherine Wu committed
99
100

    # Calculate model loss.
Katherine Wu's avatar
Katherine Wu committed
101
102
    # xentropy contains the cross entropy loss of every nonpadding token in the
    # targets.
Katherine Wu's avatar
Katherine Wu committed
103
    xentropy, weights = metrics.padded_cross_entropy_loss(
104
        logits, targets, params["label_smoothing"], params["vocab_size"])
Katherine Wu's avatar
Katherine Wu committed
105
    loss = tf.reduce_sum(xentropy) / tf.reduce_sum(weights)
Katherine Wu's avatar
Katherine Wu committed
106

107
108
109
    # Save loss as named tensor that will be logged with the logging hook.
    tf.identity(loss, "cross_entropy")

Katherine Wu's avatar
Katherine Wu committed
110
    if mode == tf.estimator.ModeKeys.EVAL:
111
112
      if params["use_tpu"]:
        # host call functions should only have tensors as arguments.
alope107's avatar
alope107 committed
113
        # This lambda pre-populates params so that metric_fn is
114
        # TPUEstimator compliant.
alope107's avatar
alope107 committed
115
116
        metric_fn = lambda logits, labels: (
            metrics.get_eval_metrics(logits, labels, params=params))
117
118
119
120
        eval_metrics = (metric_fn, [logits, labels])
        return tf.contrib.tpu.TPUEstimatorSpec(
            mode=mode, loss=loss, predictions={"predictions": logits},
            eval_metrics=eval_metrics)
Katherine Wu's avatar
Katherine Wu committed
121
122
123
124
      return tf.estimator.EstimatorSpec(
          mode=mode, loss=loss, predictions={"predictions": logits},
          eval_metric_ops=metrics.get_eval_metrics(logits, labels, params))
    else:
125
126
127
128
129
130
131
132
133
134
135
136
137
      train_op, metric_dict = get_train_op_and_metrics(loss, params)

      # Epochs can be quite long. This gives some intermediate information
      # in TensorBoard.
      metric_dict["minibatch_loss"] = loss
      if params["use_tpu"]:
        return tf.contrib.tpu.TPUEstimatorSpec(
            mode=mode, loss=loss, train_op=train_op,
            host_call=tpu_util.construct_scalar_host_call(
                metric_dict=metric_dict, model_dir=params["model_dir"],
                prefix="training/")
        )
      record_scalars(metric_dict)
Katherine Wu's avatar
Katherine Wu committed
138
139
140
      return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)


141
142
143
144
145
def record_scalars(metric_dict):
  for key, value in metric_dict.items():
    tf.contrib.summary.scalar(name=key, tensor=value)


Katherine Wu's avatar
Katherine Wu committed
146
147
148
149
150
151
152
153
154
155
156
157
def get_learning_rate(learning_rate, hidden_size, learning_rate_warmup_steps):
  """Calculate learning rate with linear warmup and rsqrt decay."""
  with tf.name_scope("learning_rate"):
    warmup_steps = tf.to_float(learning_rate_warmup_steps)
    step = tf.to_float(tf.train.get_or_create_global_step())

    learning_rate *= (hidden_size ** -0.5)
    # Apply linear warmup
    learning_rate *= tf.minimum(1.0, step / warmup_steps)
    # Apply rsqrt decay
    learning_rate *= tf.rsqrt(tf.maximum(step, warmup_steps))

158
159
160
161
    # Create a named tensor that will be logged using the logging hook.
    # The full name includes variable and names scope. In this case, the name
    # is model/get_train_op/learning_rate/learning_rate
    tf.identity(learning_rate, "learning_rate")
Katherine Wu's avatar
Katherine Wu committed
162
163
164
165

    return learning_rate


166
167
def get_train_op_and_metrics(loss, params):
  """Generate training op and metrics to save in TensorBoard."""
Katherine Wu's avatar
Katherine Wu committed
168
169
  with tf.variable_scope("get_train_op"):
    learning_rate = get_learning_rate(
170
171
172
        learning_rate=params["learning_rate"],
        hidden_size=params["hidden_size"],
        learning_rate_warmup_steps=params["learning_rate_warmup_steps"])
Katherine Wu's avatar
Katherine Wu committed
173
174
175
176
177

    # Create optimizer. Use LazyAdamOptimizer from TF contrib, which is faster
    # than the TF core Adam optimizer.
    optimizer = tf.contrib.opt.LazyAdamOptimizer(
        learning_rate,
178
179
180
181
182
183
        beta1=params["optimizer_adam_beta1"],
        beta2=params["optimizer_adam_beta2"],
        epsilon=params["optimizer_adam_epsilon"])

    if params["use_tpu"] and params["tpu"] != tpu_util.LOCAL:
      optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
Katherine Wu's avatar
Katherine Wu committed
184
185
186
187
188
189

    # Calculate and apply gradients using LazyAdamOptimizer.
    global_step = tf.train.get_global_step()
    tvars = tf.trainable_variables()
    gradients = optimizer.compute_gradients(
        loss, tvars, colocate_gradients_with_ops=True)
190
    minimize_op = optimizer.apply_gradients(
Katherine Wu's avatar
Katherine Wu committed
191
        gradients, global_step=global_step, name="train")
192
193
194
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    train_op = tf.group(minimize_op, update_ops)

195
    train_metrics = {"learning_rate": learning_rate}
Katherine Wu's avatar
Katherine Wu committed
196

197
198
199
200
    if not params["use_tpu"]:
      # gradient norm is not included as a summary when running on TPU, as
      # it can cause instability between the TPU and the host controller.
      gradient_norm = tf.global_norm(list(zip(*gradients))[0])
201
      train_metrics["global_norm/gradient_norm"] = gradient_norm
202

203
    return train_op, train_metrics
Katherine Wu's avatar
Katherine Wu committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227


def translate_and_compute_bleu(estimator, subtokenizer, bleu_source, bleu_ref):
  """Translate file and report the cased and uncased bleu scores."""
  # Create temporary file to store translation.
  tmp = tempfile.NamedTemporaryFile(delete=False)
  tmp_filename = tmp.name

  translate.translate_file(
      estimator, subtokenizer, bleu_source, output_file=tmp_filename,
      print_all_translations=False)

  # Compute uncased and cased bleu scores.
  uncased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, False)
  cased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, True)
  os.remove(tmp_filename)
  return uncased_score, cased_score


def get_global_step(estimator):
  """Return estimator's last checkpoint."""
  return int(estimator.latest_checkpoint().split("-")[-1])


228
def evaluate_and_log_bleu(estimator, bleu_source, bleu_ref, vocab_file):
Katherine Wu's avatar
Katherine Wu committed
229
  """Calculate and record the BLEU score."""
230
  subtokenizer = tokenizer.Subtokenizer(vocab_file)
Katherine Wu's avatar
Katherine Wu committed
231
232
233
234

  uncased_score, cased_score = translate_and_compute_bleu(
      estimator, subtokenizer, bleu_source, bleu_ref)

235
236
  tf.logging.info("Bleu score (uncased): %d", uncased_score)
  tf.logging.info("Bleu score (cased): %d", cased_score)
Katherine Wu's avatar
Katherine Wu committed
237
238
  return uncased_score, cased_score

239
240
241

def _validate_file(filepath):
  """Make sure that file exists."""
242
  if not tf.io.gfile.exists(filepath):
243
244
245
    raise tf.errors.NotFoundError(None, None, "File %s not found." % filepath)


246
247
def run_loop(
    estimator, schedule_manager, train_hooks=None, benchmark_logger=None,
248
    bleu_source=None, bleu_ref=None, bleu_threshold=None, vocab_file=None):
Katherine Wu's avatar
Katherine Wu committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
  """Train and evaluate model, and optionally compute model's BLEU score.

  **Step vs. Epoch vs. Iteration**

  Steps and epochs are canonical terms used in TensorFlow and general machine
  learning. They are used to describe running a single process (train/eval):
    - Step refers to running the process through a single or batch of examples.
    - Epoch refers to running the process through an entire dataset.

  E.g. training a dataset with 100 examples. The dataset is
  divided into 20 batches with 5 examples per batch. A single training step
  trains the model on one batch. After 20 training steps, the model will have
  trained on every batch in the dataset, or, in other words, one epoch.

  Meanwhile, iteration is used in this implementation to describe running
  multiple processes (training and eval).
    - A single iteration:
      1. trains the model for a specific number of steps or epochs.
      2. evaluates the model.
      3. (if source and ref files are provided) compute BLEU score.

  This function runs through multiple train+eval+bleu iterations.

  Args:
    estimator: tf.Estimator containing model to train.
274
    schedule_manager: A schedule.Manager object to guide the run loop.
275
276
    train_hooks: List of hooks to pass to the estimator during training.
    benchmark_logger: a BenchmarkLogger object that logs evaluation data
Katherine Wu's avatar
Katherine Wu committed
277
278
279
    bleu_source: File containing text to be translated for BLEU calculation.
    bleu_ref: File containing reference translations for BLEU calculation.
    bleu_threshold: minimum BLEU score before training is stopped.
280
281
    vocab_file: Path to vocab file that will be used to subtokenize bleu_source.

282
283
284
285
286
  Returns:
    Dict of results of the run.  Contains the keys `eval_results`,
    `train_hooks`, `bleu_cased`, and `bleu_uncased`. `train_hooks` is a list the
    instances of hooks used during training.

287
288
289
  Raises:
    ValueError: if both or none of single_iteration_train_steps and
      single_iteration_train_epochs were defined.
290
    NotFoundError: if the vocab file or bleu files don't exist.
Katherine Wu's avatar
Katherine Wu committed
291
  """
292
293
294
295
296
297
  if bleu_source:
    _validate_file(bleu_source)
  if bleu_ref:
    _validate_file(bleu_ref)
  if vocab_file:
    _validate_file(vocab_file)
Katherine Wu's avatar
Katherine Wu committed
298
299

  evaluate_bleu = bleu_source is not None and bleu_ref is not None
300
301
302
303
  if evaluate_bleu and schedule_manager.use_tpu:
    raise ValueError("BLEU score can not be computed when training with a TPU, "
                     "as it requires estimator.predict which is not yet "
                     "supported.")
Katherine Wu's avatar
Katherine Wu committed
304

305
306
  # Print details of training schedule.
  tf.logging.info("Training schedule:")
307
308
  tf.logging.info(
      "\t1. Train for {}".format(schedule_manager.train_increment_str))
309
  tf.logging.info("\t2. Evaluate model.")
Katherine Wu's avatar
Katherine Wu committed
310
  if evaluate_bleu:
311
    tf.logging.info("\t3. Compute BLEU score.")
Katherine Wu's avatar
Katherine Wu committed
312
    if bleu_threshold is not None:
313
314
      tf.logging.info("Repeat above steps until the BLEU score reaches %f" %
                      bleu_threshold)
Katherine Wu's avatar
Katherine Wu committed
315
  if not evaluate_bleu or bleu_threshold is None:
316
317
    tf.logging.info("Repeat above steps %d times." %
                    schedule_manager.train_eval_iterations)
Katherine Wu's avatar
Katherine Wu committed
318
319

  if evaluate_bleu:
320
321
    # Create summary writer to log bleu score (values can be displayed in
    # Tensorboard).
Katherine Wu's avatar
Katherine Wu committed
322
323
324
325
    bleu_writer = tf.summary.FileWriter(
        os.path.join(estimator.model_dir, BLEU_DIR))
    if bleu_threshold is not None:
      # Change loop stopping condition if bleu_threshold is defined.
326
      schedule_manager.train_eval_iterations = INF
Katherine Wu's avatar
Katherine Wu committed
327
328

  # Loop training/evaluation/bleu cycles
329
  stats = {}
330
  for i in xrange(schedule_manager.train_eval_iterations):
331
    tf.logging.info("Starting iteration %d" % (i + 1))
Katherine Wu's avatar
Katherine Wu committed
332
333
334

    # Train the model for single_iteration_train_steps or until the input fn
    # runs out of examples (if single_iteration_train_steps is None).
335
    estimator.train(
336
337
        dataset.train_input_fn,
        steps=schedule_manager.single_iteration_train_steps,
338
        hooks=train_hooks)
Katherine Wu's avatar
Katherine Wu committed
339

340
341
342
343
    eval_results = estimator.evaluate(
        input_fn=dataset.eval_input_fn,
        steps=schedule_manager.single_iteration_eval_steps)

344
    tf.logging.info("Evaluation results (iter %d/%d):" %
345
                    (i + 1, schedule_manager.train_eval_iterations))
346
347
348
349
350
351
352
353
    tf.logging.info(eval_results)
    benchmark_logger.log_evaluation_result(eval_results)

    # The results from estimator.evaluate() are measured on an approximate
    # translation, which utilize the target golden values provided. The actual
    # bleu score must be computed using the estimator.predict() path, which
    # outputs translations that are not based on golden values. The translations
    # are compared to reference file to get the actual bleu score.
Katherine Wu's avatar
Katherine Wu committed
354
    if evaluate_bleu:
355
      uncased_score, cased_score = evaluate_and_log_bleu(
356
          estimator, bleu_source, bleu_ref, vocab_file)
357

358
359
360
      stats["bleu_uncased"] = uncased_score
      stats["bleu_cased"] = cased_score

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
      # Write actual bleu scores using summary writer and benchmark logger
      global_step = get_global_step(estimator)
      summary = tf.Summary(value=[
          tf.Summary.Value(tag="bleu/uncased", simple_value=uncased_score),
          tf.Summary.Value(tag="bleu/cased", simple_value=cased_score),
      ])
      bleu_writer.add_summary(summary, global_step)
      bleu_writer.flush()
      benchmark_logger.log_metric(
          "bleu_uncased", uncased_score, global_step=global_step)
      benchmark_logger.log_metric(
          "bleu_cased", cased_score, global_step=global_step)

      # Stop training if bleu stopping threshold is met.
      if model_helpers.past_stop_threshold(bleu_threshold, uncased_score):
Katherine Wu's avatar
Katherine Wu committed
376
377
378
        bleu_writer.close()
        break

379
380
381
382
383
  stats["eval_results"] = eval_results
  stats["train_hooks"] = train_hooks

  return stats

Katherine Wu's avatar
Katherine Wu committed
384

385
386
387
def define_transformer_flags():
  """Add flags and flag validators for running transformer_main."""
  # Add common flags (data_dir, model_dir, train_epochs, etc.).
388
  flags_core.define_base()
389
390
391
392
  flags_core.define_performance(
      num_parallel_calls=True,
      inter_op=False,
      intra_op=False,
393
      synthetic_data=True,
394
      max_train_steps=False,
395
396
      dtype=False,
      all_reduce_alg=True
397
398
  )
  flags_core.define_benchmark()
399
  flags_core.define_device(tpu=True)
400
401
402
403
404
405
406
407
408

  # Set flags from the flags_core module as "key flags" so they're listed when
  # the '-h' flag is used. Without this line, the flags defined above are
  # only shown in the full `--helpful` help text.
  flags.adopt_module_key_flags(flags_core)

  # Add transformer-specific flags
  flags.DEFINE_enum(
      name="param_set", short_name="mp", default="big",
409
      enum_values=PARAMS_MAP.keys(),
410
411
412
413
414
415
416
      help=flags_core.help_wrap(
          "Parameter set to use when creating and training the model. The "
          "parameters define the input shape (batch size and max length), "
          "model configuration (size of embedding, # of hidden layers, etc.), "
          "and various other settings. The big parameter set increases the "
          "default batch size, embedding/hidden size, and filter size. For a "
          "complete list of parameters, please see model/model_params.py."))
Katherine Wu's avatar
Katherine Wu committed
417

418
419
420
421
422
423
424
425
426
427
  flags.DEFINE_bool(
      name="static_batch", default=False,
      help=flags_core.help_wrap(
          "Whether the batches in the dataset should have static shapes. In "
          "general, this setting should be False. Dynamic shapes allow the "
          "inputs to be grouped so that the number of padding tokens is "
          "minimized, and helps model training. In cases where the input shape "
          "must be static (e.g. running on TPU), this setting will be ignored "
          "and static batching will always be used."))

428
429
430
431
432
433
434
435
436
  # Flags for training with steps (may be used for debugging)
  flags.DEFINE_integer(
      name="train_steps", short_name="ts", default=None,
      help=flags_core.help_wrap("The number of steps used to train."))
  flags.DEFINE_integer(
      name="steps_between_evals", short_name="sbe", default=1000,
      help=flags_core.help_wrap(
          "The Number of training steps to run between evaluations. This is "
          "used if --train_steps is defined."))
Katherine Wu's avatar
Katherine Wu committed
437

438
439
440
441
442
  # BLEU score computation
  flags.DEFINE_string(
      name="bleu_source", short_name="bls", default=None,
      help=flags_core.help_wrap(
          "Path to source file containing text translate when calculating the "
443
444
445
          "official BLEU score. Both --bleu_source and --bleu_ref must be set. "
          "Use the flag --stop_threshold to stop the script based on the "
          "uncased BLEU score."))
446
447
448
449
  flags.DEFINE_string(
      name="bleu_ref", short_name="blr", default=None,
      help=flags_core.help_wrap(
          "Path to source file containing text translate when calculating the "
450
451
452
          "official BLEU score. Both --bleu_source and --bleu_ref must be set. "
          "Use the flag --stop_threshold to stop the script based on the "
          "uncased BLEU score."))
453
  flags.DEFINE_string(
454
      name="vocab_file", short_name="vf", default=None,
455
      help=flags_core.help_wrap(
456
457
458
          "Path to subtoken vocabulary file. If data_download.py was used to "
          "download and encode the training data, look in the data_dir to find "
          "the vocab file."))
459
460
461
462
463
464
465
466
467
468
469
470
471
472

  flags_core.set_defaults(data_dir="/tmp/translate_ende",
                          model_dir="/tmp/transformer_model",
                          batch_size=None,
                          train_epochs=None)

  @flags.multi_flags_validator(
      ["train_epochs", "train_steps"],
      message="Both --train_steps and --train_epochs were set. Only one may be "
              "defined.")
  def _check_train_limits(flag_dict):
    return flag_dict["train_epochs"] is None or flag_dict["train_steps"] is None

  @flags.multi_flags_validator(
473
      ["bleu_source", "bleu_ref"],
474
      message="Both or neither --bleu_source and --bleu_ref must be defined.")
475
  def _check_bleu_files(flags_dict):
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    return (flags_dict["bleu_source"] is None) == (
        flags_dict["bleu_ref"] is None)

  @flags.multi_flags_validator(
      ["bleu_source", "bleu_ref", "vocab_file"],
      message="--vocab_file must be defined if --bleu_source and --bleu_ref "
              "are defined.")
  def _check_bleu_vocab_file(flags_dict):
    if flags_dict["bleu_source"] and flags_dict["bleu_ref"]:
      return flags_dict["vocab_file"] is not None
    return True

  @flags.multi_flags_validator(
      ["export_dir", "vocab_file"],
      message="--vocab_file must be defined if --export_dir is set.")
  def _check_export_vocab_file(flags_dict):
    if flags_dict["export_dir"]:
      return flags_dict["vocab_file"] is not None
    return True

  flags_core.require_cloud_storage(["data_dir", "model_dir", "export_dir"])
497
498
499
500
501
502
503
504
505
506
507
508
509
510


def construct_estimator(flags_obj, params, schedule_manager):
  """Construct an estimator from either Estimator or TPUEstimator.

  Args:
    flags_obj: The FLAGS object parsed from command line.
    params: A dict of run specific parameters.
    schedule_manager: A schedule.Manager object containing the run schedule.

  Returns:
    An estimator object to be used for training and eval.
  """
  if not params["use_tpu"]:
511
    distribution_strategy = distribution_utils.get_distribution_strategy(
512
513
514
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_core.get_num_gpus(flags_obj),
        all_reduce_alg=flags_obj.all_reduce_alg)
515
    return tf.estimator.Estimator(
516
517
        model_fn=model_fn, model_dir=flags_obj.model_dir, params=params,
        config=tf.estimator.RunConfig(train_distribute=distribution_strategy))
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

  tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
      tpu=flags_obj.tpu,
      zone=flags_obj.tpu_zone,
      project=flags_obj.tpu_gcp_project
  )

  tpu_config = tf.contrib.tpu.TPUConfig(
      iterations_per_loop=schedule_manager.single_iteration_train_steps,
      num_shards=flags_obj.num_tpu_shards)

  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      model_dir=flags_obj.model_dir,
      session_config=tf.ConfigProto(
          allow_soft_placement=True, log_device_placement=True),
      tpu_config=tpu_config)

  return tf.contrib.tpu.TPUEstimator(
      model_fn=model_fn,
      use_tpu=params["use_tpu"] and flags_obj.tpu != tpu_util.LOCAL,
      train_batch_size=schedule_manager.batch_size,
      eval_batch_size=schedule_manager.batch_size,
      params={
          # TPUEstimator needs to populate batch_size itself due to sharding.
          key: value for key, value in params.items() if key != "batch_size"},
      config=run_config)

546
547
548
549
550
551

def run_transformer(flags_obj):
  """Create tf.Estimator to train and evaluate transformer model.

  Args:
    flags_obj: Object containing parsed flag values.
552
553
554
555
556

  Returns:
    Dict of results of the run.  Contains the keys `eval_results`,
    `train_hooks`, `bleu_cased`, and `bleu_uncased`. `train_hooks` is a list the
    instances of hooks used during training.
557
  """
558
559
  num_gpus = flags_core.get_num_gpus(flags_obj)

Katherine Wu's avatar
Katherine Wu committed
560
  # Add flag-defined parameters to params object
561
  params = PARAMS_MAP[flags_obj.param_set]
562
563
564
565
566
567
  if num_gpus > 1:
    if flags_obj.param_set == "big":
      params = model_params.BIG_MULTI_GPU_PARAMS
    elif flags_obj.param_set == "base":
      params = model_params.BASE_MULTI_GPU_PARAMS

568
569
570
571
572
573
574
575
576
  params["data_dir"] = flags_obj.data_dir
  params["model_dir"] = flags_obj.model_dir
  params["num_parallel_calls"] = flags_obj.num_parallel_calls

  params["tpu"] = flags_obj.tpu
  params["use_tpu"] = bool(flags_obj.tpu)  # was a tpu specified.
  params["static_batch"] = flags_obj.static_batch or params["use_tpu"]
  params["allow_ffn_pad"] = not params["use_tpu"]

577
578
  params["use_synthetic_data"] = flags_obj.use_synthetic_data

579
580
581
582
583
584
  # Set batch size parameter, which depends on the availability of
  # TPU and GPU, and distribution settings.
  params["batch_size"] = (flags_obj.batch_size or (
      params["default_batch_size_tpu"] if params["use_tpu"]
      else params["default_batch_size"]))

585
  total_batch_size = params["batch_size"]
586
  if not params["use_tpu"]:
587
    params["batch_size"] = distribution_utils.per_replica_batch_size(
588
589
        params["batch_size"], num_gpus)

590
591
592
593
594
595
596
597
598
599
600
601
602
  schedule_manager = schedule.Manager(
      train_steps=flags_obj.train_steps,
      steps_between_evals=flags_obj.steps_between_evals,
      train_epochs=flags_obj.train_epochs,
      epochs_between_evals=flags_obj.epochs_between_evals,
      default_train_epochs=DEFAULT_TRAIN_EPOCHS,
      batch_size=params["batch_size"],
      max_length=params["max_length"],
      use_tpu=params["use_tpu"],
      num_tpu_shards=flags_obj.num_tpu_shards
  )

  params["repeat_dataset"] = schedule_manager.repeat_dataset
603

604
605
  model_helpers.apply_clean(flags.FLAGS)

606
607
608
  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      flags_obj.hooks,
609
      model_dir=flags_obj.model_dir,
610
      tensors_to_log=TENSORS_TO_LOG,  # used for logging hooks
611
      batch_size=total_batch_size,  # for ExamplesPerSecondHook
612
      use_tpu=params["use_tpu"]  # Not all hooks can run with TPUs
613
  )
614
  benchmark_logger = logger.get_benchmark_logger()
615
616
617
  benchmark_logger.log_run_info(
      model_name="transformer",
      dataset_name="wmt_translate_ende",
618
      run_params=params,
619
      test_id=flags_obj.benchmark_test_id)
620
621

  # Train and evaluate transformer model
622
  estimator = construct_estimator(flags_obj, params, schedule_manager)
623
  stats = run_loop(
624
625
      estimator=estimator,
      # Training arguments
626
      schedule_manager=schedule_manager,
627
628
629
630
631
632
      train_hooks=train_hooks,
      benchmark_logger=benchmark_logger,
      # BLEU calculation arguments
      bleu_source=flags_obj.bleu_source,
      bleu_ref=flags_obj.bleu_ref,
      bleu_threshold=flags_obj.stop_threshold,
633
634
      vocab_file=flags_obj.vocab_file)

635
  if flags_obj.export_dir and not params["use_tpu"]:
636
637
638
639
640
641
642
643
644
645
    serving_input_fn = export.build_tensor_serving_input_receiver_fn(
        shape=[None], dtype=tf.int64, batch_size=None)
    # Export saved model, and save the vocab file as an extra asset. The vocab
    # file is saved to allow consistent input encoding and output decoding.
    # (See the "Export trained model" section in the README for an example of
    # how to use the vocab file.)
    # Since the model itself does not use the vocab file, this file is saved as
    # an extra asset rather than a core asset.
    estimator.export_savedmodel(
        flags_obj.export_dir, serving_input_fn,
646
647
        assets_extra={"vocab.txt": flags_obj.vocab_file},
        strip_default_attrs=True)
648
  return stats
Katherine Wu's avatar
Katherine Wu committed
649
650


651
def main(_):
652
653
  with logger.benchmark_context(flags.FLAGS):
    run_transformer(flags.FLAGS)
Katherine Wu's avatar
Katherine Wu committed
654
655


656
657
658
659
if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  define_transformer_flags()
  absl_app.run(main)