transformer_main.py 24.4 KB
Newer Older
Katherine Wu's avatar
Katherine Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
16
17
18
19
"""Train and evaluate the Transformer model.

See README for description of setting the training schedule and evaluating the
BLEU score.
"""
Katherine Wu's avatar
Katherine Wu committed
20
21
22
23
24

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import functools
Katherine Wu's avatar
Katherine Wu committed
26
27
28
29
30
import os
import tempfile

# pylint: disable=g-bad-import-order
from six.moves import xrange  # pylint: disable=redefined-builtin
31
32
from absl import app as absl_app
from absl import flags
Katherine Wu's avatar
Katherine Wu committed
33
34
35
36
37
38
39
40
41
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.transformer import compute_bleu
from official.transformer import translate
from official.transformer.model import model_params
from official.transformer.model import transformer
from official.transformer.utils import dataset
from official.transformer.utils import metrics
42
from official.transformer.utils import schedule
Katherine Wu's avatar
Katherine Wu committed
43
from official.transformer.utils import tokenizer
44
from official.utils.accelerator import tpu as tpu_util
45
from official.utils.export import export
46
47
48
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
49
from official.utils.misc import distribution_utils
50
51
52
from official.utils.misc import model_helpers

PARAMS_MAP = {
53
54
55
    "tiny": model_params.TINY_PARAMS,
    "base": model_params.BASE_PARAMS,
    "big": model_params.BIG_PARAMS,
56
}
57
58


Katherine Wu's avatar
Katherine Wu committed
59
60
DEFAULT_TRAIN_EPOCHS = 10
INF = int(1e9)
61
BLEU_DIR = "bleu"
Katherine Wu's avatar
Katherine Wu committed
62

63
64
65
66
67
68
# Dictionary containing tensors that are logged by the logging hooks. Each item
# maps a string to the tensor name.
TENSORS_TO_LOG = {
    "learning_rate": "model/get_train_op/learning_rate/learning_rate",
    "cross_entropy_loss": "model/cross_entropy"}

Katherine Wu's avatar
Katherine Wu committed
69
70
71
72
73
74
75
76
77

def model_fn(features, labels, mode, params):
  """Defines how to train, evaluate and predict from the transformer model."""
  with tf.variable_scope("model"):
    inputs, targets = features, labels

    # Create model and get output logits.
    model = transformer.Transformer(params, mode == tf.estimator.ModeKeys.TRAIN)

78
    logits = model(inputs, targets)
Katherine Wu's avatar
Katherine Wu committed
79
80
81
82

    # When in prediction mode, the labels/targets is None. The model output
    # is the prediction
    if mode == tf.estimator.ModeKeys.PREDICT:
83
84
      if params["use_tpu"]:
        raise NotImplementedError("Prediction is not yet supported on TPUs.")
Katherine Wu's avatar
Katherine Wu committed
85
86
      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.PREDICT,
87
88
89
90
          predictions=logits,
          export_outputs={
              "translate": tf.estimator.export.PredictOutput(logits)
          })
Katherine Wu's avatar
Katherine Wu committed
91

92
93
94
95
96
97
98
99
    # Explicitly set the shape of the logits for XLA (TPU). This is needed
    # because the logits are passed back to the host VM CPU for metric
    # evaluation, and the shape of [?, ?, vocab_size] is too vague. However
    # it is known from Transformer that the first two dimensions of logits
    # are the dimensions of targets. Note that the ambiguous shape of logits is
    # not a problem when computing xentropy, because padded_cross_entropy_loss
    # resolves the shape on the TPU.
    logits.set_shape(targets.shape.as_list() + logits.shape.as_list()[2:])
Katherine Wu's avatar
Katherine Wu committed
100
101

    # Calculate model loss.
Katherine Wu's avatar
Katherine Wu committed
102
103
    # xentropy contains the cross entropy loss of every nonpadding token in the
    # targets.
Katherine Wu's avatar
Katherine Wu committed
104
    xentropy, weights = metrics.padded_cross_entropy_loss(
105
        logits, targets, params["label_smoothing"], params["vocab_size"])
Katherine Wu's avatar
Katherine Wu committed
106
    loss = tf.reduce_sum(xentropy) / tf.reduce_sum(weights)
Katherine Wu's avatar
Katherine Wu committed
107

108
109
110
    # Save loss as named tensor that will be logged with the logging hook.
    tf.identity(loss, "cross_entropy")

Katherine Wu's avatar
Katherine Wu committed
111
    if mode == tf.estimator.ModeKeys.EVAL:
112
113
114
115
116
117
118
119
120
      if params["use_tpu"]:
        # host call functions should only have tensors as arguments.
        # functools.partial() pre-populates params so that metric_fn is
        # TPUEstimator compliant.
        metric_fn = functools.partial(metrics.get_eval_metrics, params=params)
        eval_metrics = (metric_fn, [logits, labels])
        return tf.contrib.tpu.TPUEstimatorSpec(
            mode=mode, loss=loss, predictions={"predictions": logits},
            eval_metrics=eval_metrics)
Katherine Wu's avatar
Katherine Wu committed
121
122
123
124
      return tf.estimator.EstimatorSpec(
          mode=mode, loss=loss, predictions={"predictions": logits},
          eval_metric_ops=metrics.get_eval_metrics(logits, labels, params))
    else:
125
126
127
128
129
130
131
132
133
134
135
136
137
      train_op, metric_dict = get_train_op_and_metrics(loss, params)

      # Epochs can be quite long. This gives some intermediate information
      # in TensorBoard.
      metric_dict["minibatch_loss"] = loss
      if params["use_tpu"]:
        return tf.contrib.tpu.TPUEstimatorSpec(
            mode=mode, loss=loss, train_op=train_op,
            host_call=tpu_util.construct_scalar_host_call(
                metric_dict=metric_dict, model_dir=params["model_dir"],
                prefix="training/")
        )
      record_scalars(metric_dict)
Katherine Wu's avatar
Katherine Wu committed
138
139
140
      return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)


141
142
143
144
145
def record_scalars(metric_dict):
  for key, value in metric_dict.items():
    tf.contrib.summary.scalar(name=key, tensor=value)


Katherine Wu's avatar
Katherine Wu committed
146
147
148
149
150
151
152
153
154
155
156
157
def get_learning_rate(learning_rate, hidden_size, learning_rate_warmup_steps):
  """Calculate learning rate with linear warmup and rsqrt decay."""
  with tf.name_scope("learning_rate"):
    warmup_steps = tf.to_float(learning_rate_warmup_steps)
    step = tf.to_float(tf.train.get_or_create_global_step())

    learning_rate *= (hidden_size ** -0.5)
    # Apply linear warmup
    learning_rate *= tf.minimum(1.0, step / warmup_steps)
    # Apply rsqrt decay
    learning_rate *= tf.rsqrt(tf.maximum(step, warmup_steps))

158
159
160
161
    # Create a named tensor that will be logged using the logging hook.
    # The full name includes variable and names scope. In this case, the name
    # is model/get_train_op/learning_rate/learning_rate
    tf.identity(learning_rate, "learning_rate")
Katherine Wu's avatar
Katherine Wu committed
162
163
164
165

    return learning_rate


166
167
def get_train_op_and_metrics(loss, params):
  """Generate training op and metrics to save in TensorBoard."""
Katherine Wu's avatar
Katherine Wu committed
168
169
  with tf.variable_scope("get_train_op"):
    learning_rate = get_learning_rate(
170
171
172
        learning_rate=params["learning_rate"],
        hidden_size=params["hidden_size"],
        learning_rate_warmup_steps=params["learning_rate_warmup_steps"])
Katherine Wu's avatar
Katherine Wu committed
173
174
175
176
177

    # Create optimizer. Use LazyAdamOptimizer from TF contrib, which is faster
    # than the TF core Adam optimizer.
    optimizer = tf.contrib.opt.LazyAdamOptimizer(
        learning_rate,
178
179
180
181
182
183
        beta1=params["optimizer_adam_beta1"],
        beta2=params["optimizer_adam_beta2"],
        epsilon=params["optimizer_adam_epsilon"])

    if params["use_tpu"] and params["tpu"] != tpu_util.LOCAL:
      optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
Katherine Wu's avatar
Katherine Wu committed
184
185
186
187
188
189

    # Calculate and apply gradients using LazyAdamOptimizer.
    global_step = tf.train.get_global_step()
    tvars = tf.trainable_variables()
    gradients = optimizer.compute_gradients(
        loss, tvars, colocate_gradients_with_ops=True)
190
    minimize_op = optimizer.apply_gradients(
Katherine Wu's avatar
Katherine Wu committed
191
192
        gradients, global_step=global_step, name="train")

193
194
195
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    train_op = tf.group(minimize_op, update_ops)

196
    metrics = {"learning_rate": learning_rate}
Katherine Wu's avatar
Katherine Wu committed
197

198
199
200
201
202
203
204
    if not params["use_tpu"]:
      # gradient norm is not included as a summary when running on TPU, as
      # it can cause instability between the TPU and the host controller.
      gradient_norm = tf.global_norm(list(zip(*gradients))[0])
      metrics["global_norm/gradient_norm"] = gradient_norm

    return train_op, metrics
Katherine Wu's avatar
Katherine Wu committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


def translate_and_compute_bleu(estimator, subtokenizer, bleu_source, bleu_ref):
  """Translate file and report the cased and uncased bleu scores."""
  # Create temporary file to store translation.
  tmp = tempfile.NamedTemporaryFile(delete=False)
  tmp_filename = tmp.name

  translate.translate_file(
      estimator, subtokenizer, bleu_source, output_file=tmp_filename,
      print_all_translations=False)

  # Compute uncased and cased bleu scores.
  uncased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, False)
  cased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, True)
  os.remove(tmp_filename)
  return uncased_score, cased_score


def get_global_step(estimator):
  """Return estimator's last checkpoint."""
  return int(estimator.latest_checkpoint().split("-")[-1])


229
def evaluate_and_log_bleu(estimator, bleu_source, bleu_ref, vocab_file):
Katherine Wu's avatar
Katherine Wu committed
230
  """Calculate and record the BLEU score."""
231
  subtokenizer = tokenizer.Subtokenizer(vocab_file)
Katherine Wu's avatar
Katherine Wu committed
232
233
234
235

  uncased_score, cased_score = translate_and_compute_bleu(
      estimator, subtokenizer, bleu_source, bleu_ref)

236
237
  tf.logging.info("Bleu score (uncased):", uncased_score)
  tf.logging.info("Bleu score (cased):", cased_score)
Katherine Wu's avatar
Katherine Wu committed
238
239
  return uncased_score, cased_score

240
241
def run_loop(
    estimator, schedule_manager, train_hooks=None, benchmark_logger=None,
242
    bleu_source=None, bleu_ref=None, bleu_threshold=None, vocab_file=None):
Katherine Wu's avatar
Katherine Wu committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  """Train and evaluate model, and optionally compute model's BLEU score.

  **Step vs. Epoch vs. Iteration**

  Steps and epochs are canonical terms used in TensorFlow and general machine
  learning. They are used to describe running a single process (train/eval):
    - Step refers to running the process through a single or batch of examples.
    - Epoch refers to running the process through an entire dataset.

  E.g. training a dataset with 100 examples. The dataset is
  divided into 20 batches with 5 examples per batch. A single training step
  trains the model on one batch. After 20 training steps, the model will have
  trained on every batch in the dataset, or, in other words, one epoch.

  Meanwhile, iteration is used in this implementation to describe running
  multiple processes (training and eval).
    - A single iteration:
      1. trains the model for a specific number of steps or epochs.
      2. evaluates the model.
      3. (if source and ref files are provided) compute BLEU score.

  This function runs through multiple train+eval+bleu iterations.

  Args:
    estimator: tf.Estimator containing model to train.
268
    schedule_manager: A schedule.Manager object to guide the run loop.
269
270
    train_hooks: List of hooks to pass to the estimator during training.
    benchmark_logger: a BenchmarkLogger object that logs evaluation data
Katherine Wu's avatar
Katherine Wu committed
271
272
273
    bleu_source: File containing text to be translated for BLEU calculation.
    bleu_ref: File containing reference translations for BLEU calculation.
    bleu_threshold: minimum BLEU score before training is stopped.
274
275
276
277
278
    vocab_file: Path to vocab file that will be used to subtokenize bleu_source.

  Raises:
    ValueError: if both or none of single_iteration_train_steps and
      single_iteration_train_epochs were defined.
Katherine Wu's avatar
Katherine Wu committed
279
280
281
  """

  evaluate_bleu = bleu_source is not None and bleu_ref is not None
282
283
284
285
  if evaluate_bleu and schedule_manager.use_tpu:
    raise ValueError("BLEU score can not be computed when training with a TPU, "
                     "as it requires estimator.predict which is not yet "
                     "supported.")
Katherine Wu's avatar
Katherine Wu committed
286

287
288
  # Print details of training schedule.
  tf.logging.info("Training schedule:")
289
290
  tf.logging.info(
      "\t1. Train for {}".format(schedule_manager.train_increment_str))
291
  tf.logging.info("\t2. Evaluate model.")
Katherine Wu's avatar
Katherine Wu committed
292
  if evaluate_bleu:
293
    tf.logging.info("\t3. Compute BLEU score.")
Katherine Wu's avatar
Katherine Wu committed
294
    if bleu_threshold is not None:
295
296
      tf.logging.info("Repeat above steps until the BLEU score reaches %f" %
                      bleu_threshold)
Katherine Wu's avatar
Katherine Wu committed
297
  if not evaluate_bleu or bleu_threshold is None:
298
299
    tf.logging.info("Repeat above steps %d times." %
                    schedule_manager.train_eval_iterations)
Katherine Wu's avatar
Katherine Wu committed
300
301

  if evaluate_bleu:
302
303
    # Create summary writer to log bleu score (values can be displayed in
    # Tensorboard).
Katherine Wu's avatar
Katherine Wu committed
304
305
306
307
    bleu_writer = tf.summary.FileWriter(
        os.path.join(estimator.model_dir, BLEU_DIR))
    if bleu_threshold is not None:
      # Change loop stopping condition if bleu_threshold is defined.
308
      schedule_manager.train_eval_iterations = INF
Katherine Wu's avatar
Katherine Wu committed
309
310

  # Loop training/evaluation/bleu cycles
311
  for i in xrange(schedule_manager.train_eval_iterations):
312
    tf.logging.info("Starting iteration %d" % (i + 1))
Katherine Wu's avatar
Katherine Wu committed
313
314
315

    # Train the model for single_iteration_train_steps or until the input fn
    # runs out of examples (if single_iteration_train_steps is None).
316
    estimator.train(
317
318
        dataset.train_input_fn,
        steps=schedule_manager.single_iteration_train_steps,
319
        hooks=train_hooks)
Katherine Wu's avatar
Katherine Wu committed
320

321
322
323
324
    eval_results = estimator.evaluate(
        input_fn=dataset.eval_input_fn,
        steps=schedule_manager.single_iteration_eval_steps)

325
    tf.logging.info("Evaluation results (iter %d/%d):" %
326
                    (i + 1, schedule_manager.train_eval_iterations))
327
328
329
330
331
332
333
334
    tf.logging.info(eval_results)
    benchmark_logger.log_evaluation_result(eval_results)

    # The results from estimator.evaluate() are measured on an approximate
    # translation, which utilize the target golden values provided. The actual
    # bleu score must be computed using the estimator.predict() path, which
    # outputs translations that are not based on golden values. The translations
    # are compared to reference file to get the actual bleu score.
Katherine Wu's avatar
Katherine Wu committed
335
    if evaluate_bleu:
336
      uncased_score, cased_score = evaluate_and_log_bleu(
337
          estimator, bleu_source, bleu_ref, vocab_file)
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

      # Write actual bleu scores using summary writer and benchmark logger
      global_step = get_global_step(estimator)
      summary = tf.Summary(value=[
          tf.Summary.Value(tag="bleu/uncased", simple_value=uncased_score),
          tf.Summary.Value(tag="bleu/cased", simple_value=cased_score),
      ])
      bleu_writer.add_summary(summary, global_step)
      bleu_writer.flush()
      benchmark_logger.log_metric(
          "bleu_uncased", uncased_score, global_step=global_step)
      benchmark_logger.log_metric(
          "bleu_cased", cased_score, global_step=global_step)

      # Stop training if bleu stopping threshold is met.
      if model_helpers.past_stop_threshold(bleu_threshold, uncased_score):
Katherine Wu's avatar
Katherine Wu committed
354
355
356
357
        bleu_writer.close()
        break


358
359
360
def define_transformer_flags():
  """Add flags and flag validators for running transformer_main."""
  # Add common flags (data_dir, model_dir, train_epochs, etc.).
361
  flags_core.define_base()
362
363
364
365
  flags_core.define_performance(
      num_parallel_calls=True,
      inter_op=False,
      intra_op=False,
366
      synthetic_data=True,
367
      max_train_steps=False,
368
369
      dtype=False,
      all_reduce_alg=True
370
371
  )
  flags_core.define_benchmark()
372
  flags_core.define_device(tpu=True)
373
374
375
376
377
378
379
380
381

  # Set flags from the flags_core module as "key flags" so they're listed when
  # the '-h' flag is used. Without this line, the flags defined above are
  # only shown in the full `--helpful` help text.
  flags.adopt_module_key_flags(flags_core)

  # Add transformer-specific flags
  flags.DEFINE_enum(
      name="param_set", short_name="mp", default="big",
382
      enum_values=PARAMS_MAP.keys(),
383
384
385
386
387
388
389
      help=flags_core.help_wrap(
          "Parameter set to use when creating and training the model. The "
          "parameters define the input shape (batch size and max length), "
          "model configuration (size of embedding, # of hidden layers, etc.), "
          "and various other settings. The big parameter set increases the "
          "default batch size, embedding/hidden size, and filter size. For a "
          "complete list of parameters, please see model/model_params.py."))
Katherine Wu's avatar
Katherine Wu committed
390

391
392
393
394
395
396
397
398
399
400
  flags.DEFINE_bool(
      name="static_batch", default=False,
      help=flags_core.help_wrap(
          "Whether the batches in the dataset should have static shapes. In "
          "general, this setting should be False. Dynamic shapes allow the "
          "inputs to be grouped so that the number of padding tokens is "
          "minimized, and helps model training. In cases where the input shape "
          "must be static (e.g. running on TPU), this setting will be ignored "
          "and static batching will always be used."))

401
402
403
404
405
406
407
408
409
  # Flags for training with steps (may be used for debugging)
  flags.DEFINE_integer(
      name="train_steps", short_name="ts", default=None,
      help=flags_core.help_wrap("The number of steps used to train."))
  flags.DEFINE_integer(
      name="steps_between_evals", short_name="sbe", default=1000,
      help=flags_core.help_wrap(
          "The Number of training steps to run between evaluations. This is "
          "used if --train_steps is defined."))
Katherine Wu's avatar
Katherine Wu committed
410

411
412
413
414
415
  # BLEU score computation
  flags.DEFINE_string(
      name="bleu_source", short_name="bls", default=None,
      help=flags_core.help_wrap(
          "Path to source file containing text translate when calculating the "
416
417
418
          "official BLEU score. Both --bleu_source and --bleu_ref must be set. "
          "Use the flag --stop_threshold to stop the script based on the "
          "uncased BLEU score."))
419
420
421
422
  flags.DEFINE_string(
      name="bleu_ref", short_name="blr", default=None,
      help=flags_core.help_wrap(
          "Path to source file containing text translate when calculating the "
423
424
425
          "official BLEU score. Both --bleu_source and --bleu_ref must be set. "
          "Use the flag --stop_threshold to stop the script based on the "
          "uncased BLEU score."))
426
  flags.DEFINE_string(
427
      name="vocab_file", short_name="vf", default=None,
428
      help=flags_core.help_wrap(
429
430
431
          "Path to subtoken vocabulary file. If data_download.py was used to "
          "download and encode the training data, look in the data_dir to find "
          "the vocab file."))
432
433
434
435
436
437
438
439
440
441
442
443
444
445

  flags_core.set_defaults(data_dir="/tmp/translate_ende",
                          model_dir="/tmp/transformer_model",
                          batch_size=None,
                          train_epochs=None)

  @flags.multi_flags_validator(
      ["train_epochs", "train_steps"],
      message="Both --train_steps and --train_epochs were set. Only one may be "
              "defined.")
  def _check_train_limits(flag_dict):
    return flag_dict["train_epochs"] is None or flag_dict["train_steps"] is None

  @flags.multi_flags_validator(
446
447
      ["bleu_source", "bleu_ref"],
      message="Files specified by --bleu_source and/or --bleu_ref don't exist. "
448
449
450
451
452
453
454
              "Please ensure that the file paths are correct.")
  def _check_bleu_files(flags_dict):
    """Validate files when bleu_source and bleu_ref are defined."""
    if flags_dict["bleu_source"] is None or flags_dict["bleu_ref"] is None:
      return True
    return all([
        tf.gfile.Exists(flags_dict["bleu_source"]),
455
456
457
458
459
        tf.gfile.Exists(flags_dict["bleu_ref"])])

  @flags.validator("vocab_file", "File set by --vocab_file does not exist.")
  def _check_vocab_file(vocab_file):
    """Ensure that vocab file exists."""
460
461
    if vocab_file:
      return tf.gfile.Exists(vocab_file)
462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
  flags_core.require_cloud_storage(["data_dir", "model_dir"])


def construct_estimator(flags_obj, params, schedule_manager):
  """Construct an estimator from either Estimator or TPUEstimator.

  Args:
    flags_obj: The FLAGS object parsed from command line.
    params: A dict of run specific parameters.
    schedule_manager: A schedule.Manager object containing the run schedule.

  Returns:
    An estimator object to be used for training and eval.
  """
  if not params["use_tpu"]:
478
479
    distribution_strategy = distribution_utils.get_distribution_strategy(
        flags_core.get_num_gpus(flags_obj), flags_obj.all_reduce_alg)
480
    return tf.estimator.Estimator(
481
482
        model_fn=model_fn, model_dir=flags_obj.model_dir, params=params,
        config=tf.estimator.RunConfig(train_distribute=distribution_strategy))
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

  tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
      tpu=flags_obj.tpu,
      zone=flags_obj.tpu_zone,
      project=flags_obj.tpu_gcp_project
  )

  tpu_config = tf.contrib.tpu.TPUConfig(
      iterations_per_loop=schedule_manager.single_iteration_train_steps,
      num_shards=flags_obj.num_tpu_shards)

  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      model_dir=flags_obj.model_dir,
      session_config=tf.ConfigProto(
          allow_soft_placement=True, log_device_placement=True),
      tpu_config=tpu_config)

  return tf.contrib.tpu.TPUEstimator(
      model_fn=model_fn,
      use_tpu=params["use_tpu"] and flags_obj.tpu != tpu_util.LOCAL,
      train_batch_size=schedule_manager.batch_size,
      eval_batch_size=schedule_manager.batch_size,
      params={
          # TPUEstimator needs to populate batch_size itself due to sharding.
          key: value for key, value in params.items() if key != "batch_size"},
      config=run_config)

511
512
513
514
515
516
517

def run_transformer(flags_obj):
  """Create tf.Estimator to train and evaluate transformer model.

  Args:
    flags_obj: Object containing parsed flag values.
  """
518
519
  num_gpus = flags_core.get_num_gpus(flags_obj)

Katherine Wu's avatar
Katherine Wu committed
520
  # Add flag-defined parameters to params object
521
  params = PARAMS_MAP[flags_obj.param_set]
522
523
524
525
526
527
  if num_gpus > 1:
    if flags_obj.param_set == "big":
      params = model_params.BIG_MULTI_GPU_PARAMS
    elif flags_obj.param_set == "base":
      params = model_params.BASE_MULTI_GPU_PARAMS

528
529
530
531
532
533
534
535
536
  params["data_dir"] = flags_obj.data_dir
  params["model_dir"] = flags_obj.model_dir
  params["num_parallel_calls"] = flags_obj.num_parallel_calls

  params["tpu"] = flags_obj.tpu
  params["use_tpu"] = bool(flags_obj.tpu)  # was a tpu specified.
  params["static_batch"] = flags_obj.static_batch or params["use_tpu"]
  params["allow_ffn_pad"] = not params["use_tpu"]

537
538
539
540
541
542
543
544
545
  params["use_synthetic_data"] = flags_obj.use_synthetic_data

  # Set batch size parameter, which depends on TPU and distribution settings.
  params["batch_size"] = (
      flags_obj.batch_size or params["default_batch_size_tpu"])
  if not params["use_tpu"]:
    params["batch_size"] = distribution_utils.per_device_batch_size(
        params["batch_size"], num_gpus)

546
547
548
549
550
551
552
553
554
555
556
557
558
  schedule_manager = schedule.Manager(
      train_steps=flags_obj.train_steps,
      steps_between_evals=flags_obj.steps_between_evals,
      train_epochs=flags_obj.train_epochs,
      epochs_between_evals=flags_obj.epochs_between_evals,
      default_train_epochs=DEFAULT_TRAIN_EPOCHS,
      batch_size=params["batch_size"],
      max_length=params["max_length"],
      use_tpu=params["use_tpu"],
      num_tpu_shards=flags_obj.num_tpu_shards
  )

  params["repeat_dataset"] = schedule_manager.repeat_dataset
559
560
561
562
563

  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      flags_obj.hooks,
      tensors_to_log=TENSORS_TO_LOG,  # used for logging hooks
564
565
      batch_size=schedule_manager.batch_size,  # for ExamplesPerSecondHook
      use_tpu=params["use_tpu"]  # Not all hooks can run with TPUs
566
  )
567
  benchmark_logger = logger.get_benchmark_logger()
568
569
570
  benchmark_logger.log_run_info(
      model_name="transformer",
      dataset_name="wmt_translate_ende",
571
      run_params=params,
572
      test_id=flags_obj.benchmark_test_id)
573
574

  # Train and evaluate transformer model
575
576
  estimator = construct_estimator(flags_obj, params, schedule_manager)
  run_loop(
577
578
      estimator=estimator,
      # Training arguments
579
      schedule_manager=schedule_manager,
580
581
582
583
584
585
      train_hooks=train_hooks,
      benchmark_logger=benchmark_logger,
      # BLEU calculation arguments
      bleu_source=flags_obj.bleu_source,
      bleu_ref=flags_obj.bleu_ref,
      bleu_threshold=flags_obj.stop_threshold,
586
587
588
589
590
591
592
593
594
595
596
597
598
599
      vocab_file=flags_obj.vocab_file)

  if flags_obj.export_dir:
    serving_input_fn = export.build_tensor_serving_input_receiver_fn(
        shape=[None], dtype=tf.int64, batch_size=None)
    # Export saved model, and save the vocab file as an extra asset. The vocab
    # file is saved to allow consistent input encoding and output decoding.
    # (See the "Export trained model" section in the README for an example of
    # how to use the vocab file.)
    # Since the model itself does not use the vocab file, this file is saved as
    # an extra asset rather than a core asset.
    estimator.export_savedmodel(
        flags_obj.export_dir, serving_input_fn,
        assets_extra={"vocab.txt": flags_obj.vocab_file})
Katherine Wu's avatar
Katherine Wu committed
600
601


602
def main(_):
603
604
  with logger.benchmark_context(flags.FLAGS):
    run_transformer(flags.FLAGS)
Katherine Wu's avatar
Katherine Wu committed
605
606


607
608
609
610
if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  define_transformer_flags()
  absl_app.run(main)