mnist.py 9.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
22
import sys
23
24

import tensorflow as tf
25
import dataset
26
27


Asim Shankar's avatar
Asim Shankar committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class Model(object):
  """Class that defines a graph to recognize digits in the MNIST dataset."""

  def __init__(self, data_format):
    """Creates a model for classifying a hand-written digit.

    Args:
      data_format: Either 'channels_first' or 'channels_last'.
        'channels_first' is typically faster on GPUs while 'channels_last' is
        typically faster on CPUs. See
        https://www.tensorflow.org/performance/performance_guide#data_formats
    """
    if data_format == 'channels_first':
      self._input_shape = [-1, 1, 28, 28]
    else:
      assert data_format == 'channels_last'
      self._input_shape = [-1, 28, 28, 1]

    self.conv1 = tf.layers.Conv2D(
        32, 5, padding='same', data_format=data_format, activation=tf.nn.relu)
    self.conv2 = tf.layers.Conv2D(
        64, 5, padding='same', data_format=data_format, activation=tf.nn.relu)
    self.fc1 = tf.layers.Dense(1024, activation=tf.nn.relu)
    self.fc2 = tf.layers.Dense(10)
52
    self.dropout = tf.layers.Dropout(0.4)
Asim Shankar's avatar
Asim Shankar committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    self.max_pool2d = tf.layers.MaxPooling2D(
        (2, 2), (2, 2), padding='same', data_format=data_format)

  def __call__(self, inputs, training):
    """Add operations to classify a batch of input images.

    Args:
      inputs: A Tensor representing a batch of input images.
      training: A boolean. Set to True to add operations required only when
        training the classifier.

    Returns:
      A logits Tensor with shape [<batch_size>, 10].
    """
    y = tf.reshape(inputs, self._input_shape)
    y = self.conv1(y)
    y = self.max_pool2d(y)
    y = self.conv2(y)
    y = self.max_pool2d(y)
    y = tf.layers.flatten(y)
    y = self.fc1(y)
    y = self.dropout(y, training=training)
    return self.fc2(y)


def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
  model = Model(params['data_format'])
81
82
83
84
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
85
  if mode == tf.estimator.ModeKeys.PREDICT:
86
87
88
89
90
91
92
93
94
95
96
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
97
  if mode == tf.estimator.ModeKeys.TRAIN:
98
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4)
99
100
101
102
103

    # If we are running multi-GPU, we need to wrap the optimizer.
    if params.get('multi_gpu'):
      optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)

104
    logits = model(image, training=True)
105
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
106
    accuracy = tf.metrics.accuracy(
107
        labels=labels, predictions=tf.argmax(logits, axis=1))
108
109
110
111
112
113
114
115
    # Name the accuracy tensor 'train_accuracy' to demonstrate the
    # LoggingTensorHook.
    tf.identity(accuracy[1], name='train_accuracy')
    tf.summary.scalar('train_accuracy', accuracy[1])
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
116
  if mode == tf.estimator.ModeKeys.EVAL:
117
    logits = model(image, training=False)
118
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
119
120
121
122
123
124
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Mark Daoust's avatar
Mark Daoust committed
125
                    labels=labels,
126
127
                    predictions=tf.argmax(logits, axis=1)),
        })
128
129


130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def validate_batch_size_for_multi_gpu(batch_size):
  """For multi-gpu, batch-size must be a multiple of the number of
  available GPUs.

  Note that this should eventually be handled by replicate_model_fn
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
  """
  from tensorflow.python.client import device_lib

  local_device_protos = device_lib.list_local_devices()
  num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU'])
  if not num_gpus:
    raise ValueError('Multi-GPU mode was specified, but no GPUs '
      'were found. To use CPU, run without --multi_gpu.')
    
  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
      'must be a multiple of the number of available GPUs. '
      'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
      ).format(num_gpus, batch_size, batch_size - remainder)
    raise ValueError(err)


155
def main(unused_argv):
156
157
158
159
160
161
162
163
164
165
166
  model_function = model_fn

  if FLAGS.multi_gpu:
    validate_batch_size_for_multi_gpu(FLAGS.batch_size)

    # There are two steps required if using multi-GPU: (1) wrap the model_fn,
    # and (2) wrap the optimizer. The first happens here, and (2) happens
    # in the model_fn itself when the optimizer is defined.
    model_function = tf.contrib.estimator.replicate_model_fn(
        model_fn, loss_reduction=tf.losses.Reduction.MEAN)

Asim Shankar's avatar
Asim Shankar committed
167
168
169
170
  data_format = FLAGS.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
171
  mnist_classifier = tf.estimator.Estimator(
172
      model_fn=model_function,
Asim Shankar's avatar
Asim Shankar committed
173
174
      model_dir=FLAGS.model_dir,
      params={
175
176
          'data_format': data_format,
          'multi_gpu': FLAGS.multi_gpu
Asim Shankar's avatar
Asim Shankar committed
177
      })
178

179
  # Train the model
Asim Shankar's avatar
Asim Shankar committed
180
181
182
183
  def train_input_fn():
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
184
185
    ds = dataset.train(FLAGS.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(FLAGS.batch_size).repeat(
Asim Shankar's avatar
Asim Shankar committed
186
        FLAGS.train_epochs)
187
    (images, labels) = ds.make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
188
189
    return (images, labels)

Asim Shankar's avatar
Asim Shankar committed
190
191
192
193
  # Set up training hook that logs the training accuracy every 100 steps.
  tensors_to_log = {'train_accuracy': 'train_accuracy'}
  logging_hook = tf.train.LoggingTensorHook(
      tensors=tensors_to_log, every_n_iter=100)
Asim Shankar's avatar
Asim Shankar committed
194
  mnist_classifier.train(input_fn=train_input_fn, hooks=[logging_hook])
195
196

  # Evaluate the model and print results
Asim Shankar's avatar
Asim Shankar committed
197
  def eval_input_fn():
198
199
    return dataset.test(FLAGS.data_dir).batch(
        FLAGS.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
200
201

  eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
202
  print()
203
  print('Evaluation results:\n\t%s' % eval_results)
204

205
206
  # Export the model
  if FLAGS.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
207
208
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
209
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
210
211
    })
    mnist_classifier.export_savedmodel(FLAGS.export_dir, input_fn)
212

213

214
215
216
217
class MNISTArgParser(argparse.ArgumentParser):

  def __init__(self):
    super(MNISTArgParser, self).__init__()
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    self.add_argument(
        '--multi_gpu', action='store_true',
        help='If set, run across all available GPUs.')
    self.add_argument(
        '--batch_size',
        type=int,
        default=100,
        help='Number of images to process in a batch')
    self.add_argument(
        '--data_dir',
        type=str,
        default='/tmp/mnist_data',
        help='Path to directory containing the MNIST dataset')
    self.add_argument(
        '--model_dir',
        type=str,
        default='/tmp/mnist_model',
        help='The directory where the model will be stored.')
    self.add_argument(
        '--train_epochs',
        type=int,
        default=40,
        help='Number of epochs to train.')
    self.add_argument(
        '--data_format',
        type=str,
        default=None,
        choices=['channels_first', 'channels_last'],
        help='A flag to override the data format used in the model. '
        'channels_first provides a performance boost on GPU but is not always '
        'compatible with CPU. If left unspecified, the data format will be '
        'chosen automatically based on whether TensorFlow was built for CPU or '
        'GPU.')
    self.add_argument(
        '--export_dir',
        type=str,
        help='The directory where the exported SavedModel will be stored.')


if __name__ == '__main__':
  parser = MNISTArgParser()
260
  tf.logging.set_verbosity(tf.logging.INFO)
261
262
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)