resnet_v1_test.py 26.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.nets.resnet_v1."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
23
from tensorflow.contrib import slim as contrib_slim
24
25
26
27

from nets import resnet_utils
from nets import resnet_v1

28
slim = contrib_slim
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107


def create_test_input(batch_size, height, width, channels):
  """Create test input tensor.

  Args:
    batch_size: The number of images per batch or `None` if unknown.
    height: The height of each image or `None` if unknown.
    width: The width of each image or `None` if unknown.
    channels: The number of channels per image or `None` if unknown.

  Returns:
    Either a placeholder `Tensor` of dimension
      [batch_size, height, width, channels] if any of the inputs are `None` or a
    constant `Tensor` with the mesh grid values along the spatial dimensions.
  """
  if None in [batch_size, height, width, channels]:
    return tf.placeholder(tf.float32, (batch_size, height, width, channels))
  else:
    return tf.to_float(
        np.tile(
            np.reshape(
                np.reshape(np.arange(height), [height, 1]) +
                np.reshape(np.arange(width), [1, width]),
                [1, height, width, 1]),
            [batch_size, 1, 1, channels]))


class ResnetUtilsTest(tf.test.TestCase):

  def testSubsampleThreeByThree(self):
    x = tf.reshape(tf.to_float(tf.range(9)), [1, 3, 3, 1])
    x = resnet_utils.subsample(x, 2)
    expected = tf.reshape(tf.constant([0, 2, 6, 8]), [1, 2, 2, 1])
    with self.test_session():
      self.assertAllClose(x.eval(), expected.eval())

  def testSubsampleFourByFour(self):
    x = tf.reshape(tf.to_float(tf.range(16)), [1, 4, 4, 1])
    x = resnet_utils.subsample(x, 2)
    expected = tf.reshape(tf.constant([0, 2, 8, 10]), [1, 2, 2, 1])
    with self.test_session():
      self.assertAllClose(x.eval(), expected.eval())

  def testConv2DSameEven(self):
    n, n2 = 4, 2

    # Input image.
    x = create_test_input(1, n, n, 1)

    # Convolution kernel.
    w = create_test_input(1, 3, 3, 1)
    w = tf.reshape(w, [3, 3, 1, 1])

    tf.get_variable('Conv/weights', initializer=w)
    tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
    tf.get_variable_scope().reuse_variables()

    y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
    y1_expected = tf.to_float([[14, 28, 43, 26],
                               [28, 48, 66, 37],
                               [43, 66, 84, 46],
                               [26, 37, 46, 22]])
    y1_expected = tf.reshape(y1_expected, [1, n, n, 1])

    y2 = resnet_utils.subsample(y1, 2)
    y2_expected = tf.to_float([[14, 43],
                               [43, 84]])
    y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])

    y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
    y3_expected = y2_expected

    y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
    y4_expected = tf.to_float([[48, 37],
                               [37, 22]])
    y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1])

    with self.test_session() as sess:
108
      sess.run(tf.global_variables_initializer())
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      self.assertAllClose(y1.eval(), y1_expected.eval())
      self.assertAllClose(y2.eval(), y2_expected.eval())
      self.assertAllClose(y3.eval(), y3_expected.eval())
      self.assertAllClose(y4.eval(), y4_expected.eval())

  def testConv2DSameOdd(self):
    n, n2 = 5, 3

    # Input image.
    x = create_test_input(1, n, n, 1)

    # Convolution kernel.
    w = create_test_input(1, 3, 3, 1)
    w = tf.reshape(w, [3, 3, 1, 1])

    tf.get_variable('Conv/weights', initializer=w)
    tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
    tf.get_variable_scope().reuse_variables()

    y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
    y1_expected = tf.to_float([[14, 28, 43, 58, 34],
                               [28, 48, 66, 84, 46],
                               [43, 66, 84, 102, 55],
                               [58, 84, 102, 120, 64],
                               [34, 46, 55, 64, 30]])
    y1_expected = tf.reshape(y1_expected, [1, n, n, 1])

    y2 = resnet_utils.subsample(y1, 2)
    y2_expected = tf.to_float([[14, 43, 34],
                               [43, 84, 55],
                               [34, 55, 30]])
    y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])

    y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
    y3_expected = y2_expected

    y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
    y4_expected = y2_expected

    with self.test_session() as sess:
149
      sess.run(tf.global_variables_initializer())
150
151
152
153
154
155
156
157
158
159
      self.assertAllClose(y1.eval(), y1_expected.eval())
      self.assertAllClose(y2.eval(), y2_expected.eval())
      self.assertAllClose(y3.eval(), y3_expected.eval())
      self.assertAllClose(y4.eval(), y4_expected.eval())

  def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
    """A plain ResNet without extra layers before or after the ResNet blocks."""
    with tf.variable_scope(scope, values=[inputs]):
      with slim.arg_scope([slim.conv2d], outputs_collections='end_points'):
        net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
derekjchow's avatar
derekjchow committed
160
        end_points = slim.utils.convert_collection_to_dict('end_points')
161
162
163
164
        return net, end_points

  def testEndPointsV1(self):
    """Test the end points of a tiny v1 bottleneck network."""
derekjchow's avatar
derekjchow committed
165
166
167
168
169
170
    blocks = [
        resnet_v1.resnet_v1_block(
            'block1', base_depth=1, num_units=2, stride=2),
        resnet_v1.resnet_v1_block(
            'block2', base_depth=2, num_units=2, stride=1),
    ]
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    inputs = create_test_input(2, 32, 16, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
    expected = [
        'tiny/block1/unit_1/bottleneck_v1/shortcut',
        'tiny/block1/unit_1/bottleneck_v1/conv1',
        'tiny/block1/unit_1/bottleneck_v1/conv2',
        'tiny/block1/unit_1/bottleneck_v1/conv3',
        'tiny/block1/unit_2/bottleneck_v1/conv1',
        'tiny/block1/unit_2/bottleneck_v1/conv2',
        'tiny/block1/unit_2/bottleneck_v1/conv3',
        'tiny/block2/unit_1/bottleneck_v1/shortcut',
        'tiny/block2/unit_1/bottleneck_v1/conv1',
        'tiny/block2/unit_1/bottleneck_v1/conv2',
        'tiny/block2/unit_1/bottleneck_v1/conv3',
        'tiny/block2/unit_2/bottleneck_v1/conv1',
        'tiny/block2/unit_2/bottleneck_v1/conv2',
        'tiny/block2/unit_2/bottleneck_v1/conv3']
pkulzc's avatar
pkulzc committed
189
    self.assertItemsEqual(expected, end_points.keys())
190
191
192
193
194
195
196

  def _stack_blocks_nondense(self, net, blocks):
    """A simplified ResNet Block stacker without output stride control."""
    for block in blocks:
      with tf.variable_scope(block.scope, 'block', [net]):
        for i, unit in enumerate(block.args):
          with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
derekjchow's avatar
derekjchow committed
197
            net = block.unit_fn(net, rate=1, **unit)
198
199
    return net

derekjchow's avatar
derekjchow committed
200
  def testAtrousValuesBottleneck(self):
201
202
203
204
205
206
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.
    """
derekjchow's avatar
derekjchow committed
207
    block = resnet_v1.resnet_v1_block
208
    blocks = [
derekjchow's avatar
derekjchow committed
209
210
211
212
        block('block1', base_depth=1, num_units=2, stride=2),
        block('block2', base_depth=2, num_units=2, stride=2),
        block('block3', base_depth=4, num_units=2, stride=2),
        block('block4', base_depth=8, num_units=2, stride=1),
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      with slim.arg_scope([slim.batch_norm], is_training=False):
        for output_stride in [1, 2, 4, 8, None]:
          with tf.Graph().as_default():
            with self.test_session() as sess:
              tf.set_random_seed(0)
              inputs = create_test_input(1, height, width, 3)
              # Dense feature extraction followed by subsampling.
              output = resnet_utils.stack_blocks_dense(inputs,
                                                       blocks,
                                                       output_stride)
              if output_stride is None:
                factor = 1
              else:
                factor = nominal_stride // output_stride

              output = resnet_utils.subsample(output, factor)
              # Make the two networks use the same weights.
              tf.get_variable_scope().reuse_variables()
              # Feature extraction at the nominal network rate.
              expected = self._stack_blocks_nondense(inputs, blocks)
240
              sess.run(tf.global_variables_initializer())
241
242
243
              output, expected = sess.run([output, expected])
              self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)

pkulzc's avatar
pkulzc committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  def testStridingLastUnitVsSubsampleBlockEnd(self):
    """Compares subsampling at the block's last unit or block's end.

    Makes sure that the final output is the same when we use a stride at the
    last unit of a block vs. we subsample activations at the end of a block.
    """
    block = resnet_v1.resnet_v1_block

    blocks = [
        block('block1', base_depth=1, num_units=2, stride=2),
        block('block2', base_depth=2, num_units=2, stride=2),
        block('block3', base_depth=4, num_units=2, stride=2),
        block('block4', base_depth=8, num_units=2, stride=1),
    ]

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      with slim.arg_scope([slim.batch_norm], is_training=False):
        for output_stride in [1, 2, 4, 8, None]:
          with tf.Graph().as_default():
            with self.test_session() as sess:
              tf.set_random_seed(0)
              inputs = create_test_input(1, height, width, 3)

              # Subsampling at the last unit of the block.
              output = resnet_utils.stack_blocks_dense(
                  inputs, blocks, output_stride,
                  store_non_strided_activations=False,
                  outputs_collections='output')
              output_end_points = slim.utils.convert_collection_to_dict(
                  'output')

              # Make the two networks use the same weights.
              tf.get_variable_scope().reuse_variables()

              # Subsample activations at the end of the blocks.
              expected = resnet_utils.stack_blocks_dense(
                  inputs, blocks, output_stride,
                  store_non_strided_activations=True,
                  outputs_collections='expected')
              expected_end_points = slim.utils.convert_collection_to_dict(
                  'expected')

              sess.run(tf.global_variables_initializer())

              # Make sure that the final output is the same.
              output, expected = sess.run([output, expected])
              self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)

              # Make sure that intermediate block activations in
              # output_end_points are subsampled versions of the corresponding
              # ones in expected_end_points.
              for i, block in enumerate(blocks[:-1:]):
                output = output_end_points[block.scope]
                expected = expected_end_points[block.scope]
                atrous_activated = (output_stride is not None and
                                    2 ** i >= output_stride)
                if not atrous_activated:
                  expected = resnet_utils.subsample(expected, 2)
                output, expected = sess.run([output, expected])
                self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)

308
309
310
311
312
313
314
315
316
317
318

class ResnetCompleteNetworkTest(tf.test.TestCase):
  """Tests with complete small ResNet v1 networks."""

  def _resnet_small(self,
                    inputs,
                    num_classes=None,
                    is_training=True,
                    global_pool=True,
                    output_stride=None,
                    include_root_block=True,
Derek Chow's avatar
Derek Chow committed
319
                    spatial_squeeze=True,
320
321
322
                    reuse=None,
                    scope='resnet_v1_small'):
    """A shallow and thin ResNet v1 for faster tests."""
derekjchow's avatar
derekjchow committed
323
    block = resnet_v1.resnet_v1_block
324
    blocks = [
derekjchow's avatar
derekjchow committed
325
326
327
328
329
        block('block1', base_depth=1, num_units=3, stride=2),
        block('block2', base_depth=2, num_units=3, stride=2),
        block('block3', base_depth=4, num_units=3, stride=2),
        block('block4', base_depth=8, num_units=2, stride=1),
    ]
330
331
332
333
334
    return resnet_v1.resnet_v1(inputs, blocks, num_classes,
                               is_training=is_training,
                               global_pool=global_pool,
                               output_stride=output_stride,
                               include_root_block=include_root_block,
Derek Chow's avatar
Derek Chow committed
335
                               spatial_squeeze=spatial_squeeze,
336
337
338
339
340
341
342
343
344
345
                               reuse=reuse,
                               scope=scope)

  def testClassificationEndPoints(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      logits, end_points = self._resnet_small(inputs, num_classes,
                                              global_pool=global_pool,
Derek Chow's avatar
Derek Chow committed
346
                                              spatial_squeeze=False,
347
348
349
350
351
352
                                              scope='resnet')
    self.assertTrue(logits.op.name.startswith('resnet/logits'))
    self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
    self.assertTrue('predictions' in end_points)
    self.assertListEqual(end_points['predictions'].get_shape().as_list(),
                         [2, 1, 1, num_classes])
353
354
355
356
    self.assertTrue('global_pool' in end_points)
    self.assertListEqual(end_points['global_pool'].get_shape().as_list(),
                         [2, 1, 1, 32])

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  def testClassificationEndPointsWithNoBatchNormArgscope(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      logits, end_points = self._resnet_small(inputs, num_classes,
                                              global_pool=global_pool,
                                              spatial_squeeze=False,
                                              is_training=None,
                                              scope='resnet')
    self.assertTrue(logits.op.name.startswith('resnet/logits'))
    self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
    self.assertTrue('predictions' in end_points)
    self.assertListEqual(end_points['predictions'].get_shape().as_list(),
                         [2, 1, 1, num_classes])
    self.assertTrue('global_pool' in end_points)
    self.assertListEqual(end_points['global_pool'].get_shape().as_list(),
                         [2, 1, 1, 32])

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
  def testEndpointNames(self):
    # Like ResnetUtilsTest.testEndPointsV1(), but for the public API.
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
                                         scope='resnet')
    expected = ['resnet/conv1']
    for block in range(1, 5):
      for unit in range(1, 4 if block < 4 else 3):
        for conv in range(1, 4):
          expected.append('resnet/block%d/unit_%d/bottleneck_v1/conv%d' %
                          (block, unit, conv))
        expected.append('resnet/block%d/unit_%d/bottleneck_v1' % (block, unit))
      expected.append('resnet/block%d/unit_1/bottleneck_v1/shortcut' % block)
      expected.append('resnet/block%d' % block)
    expected.extend(['global_pool', 'resnet/logits', 'resnet/spatial_squeeze',
                     'predictions'])
    self.assertItemsEqual(end_points.keys(), expected)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

  def testClassificationShapes(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 28, 28, 4],
          'resnet/block2': [2, 14, 14, 8],
          'resnet/block3': [2, 7, 7, 16],
          'resnet/block4': [2, 7, 7, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 321, 321, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
Derek Chow's avatar
Derek Chow committed
422
                                         spatial_squeeze=False,
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 21, 21, 8],
          'resnet/block3': [2, 11, 11, 16],
          'resnet/block4': [2, 11, 11, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testRootlessFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 128, 128, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
                                         include_root_block=False,
Derek Chow's avatar
Derek Chow committed
441
                                         spatial_squeeze=False,
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 64, 64, 4],
          'resnet/block2': [2, 32, 32, 8],
          'resnet/block3': [2, 16, 16, 16],
          'resnet/block4': [2, 16, 16, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testAtrousFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    output_stride = 8
    inputs = create_test_input(2, 321, 321, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs,
                                         num_classes,
                                         global_pool=global_pool,
                                         output_stride=output_stride,
Derek Chow's avatar
Derek Chow committed
462
                                         spatial_squeeze=False,
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 41, 41, 8],
          'resnet/block3': [2, 41, 41, 16],
          'resnet/block4': [2, 41, 41, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testAtrousFullyConvolutionalValues(self):
    """Verify dense feature extraction with atrous convolution."""
    nominal_stride = 32
    for output_stride in [4, 8, 16, 32, None]:
      with slim.arg_scope(resnet_utils.resnet_arg_scope()):
        with tf.Graph().as_default():
          with self.test_session() as sess:
            tf.set_random_seed(0)
            inputs = create_test_input(2, 81, 81, 3)
            # Dense feature extraction followed by subsampling.
            output, _ = self._resnet_small(inputs, None, is_training=False,
                                           global_pool=False,
                                           output_stride=output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride
            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            tf.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected, _ = self._resnet_small(inputs, None, is_training=False,
                                             global_pool=False)
496
            sess.run(tf.global_variables_initializer())
497
498
499
500
501
502
503
504
505
506
507
508
            self.assertAllClose(output.eval(), expected.eval(),
                                atol=1e-4, rtol=1e-4)

  def testUnknownBatchSize(self):
    batch = 2
    height, width = 65, 65
    global_pool = True
    num_classes = 10
    inputs = create_test_input(None, height, width, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      logits, _ = self._resnet_small(inputs, num_classes,
                                     global_pool=global_pool,
Derek Chow's avatar
Derek Chow committed
509
                                     spatial_squeeze=False,
510
511
512
513
514
515
                                     scope='resnet')
    self.assertTrue(logits.op.name.startswith('resnet/logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, 1, 1, num_classes])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
516
      sess.run(tf.global_variables_initializer())
517
518
519
520
521
522
523
524
525
526
527
528
529
530
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 1, 1, num_classes))

  def testFullyConvolutionalUnknownHeightWidth(self):
    batch = 2
    height, width = 65, 65
    global_pool = False
    inputs = create_test_input(batch, None, None, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      output, _ = self._resnet_small(inputs, None, global_pool=global_pool)
    self.assertListEqual(output.get_shape().as_list(),
                         [batch, None, None, 32])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
531
      sess.run(tf.global_variables_initializer())
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
      output = sess.run(output, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 3, 3, 32))

  def testAtrousFullyConvolutionalUnknownHeightWidth(self):
    batch = 2
    height, width = 65, 65
    global_pool = False
    output_stride = 8
    inputs = create_test_input(batch, None, None, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      output, _ = self._resnet_small(inputs,
                                     None,
                                     global_pool=global_pool,
                                     output_stride=output_stride)
    self.assertListEqual(output.get_shape().as_list(),
                         [batch, None, None, 32])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
550
      sess.run(tf.global_variables_initializer())
551
552
553
      output = sess.run(output, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 9, 9, 32))

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
  def testDepthMultiplier(self):
    resnets = [
        resnet_v1.resnet_v1_50, resnet_v1.resnet_v1_101,
        resnet_v1.resnet_v1_152, resnet_v1.resnet_v1_200
    ]
    resnet_names = [
        'resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152', 'resnet_v1_200'
    ]
    for resnet, resnet_name in zip(resnets, resnet_names):
      depth_multiplier = 0.25
      global_pool = True
      num_classes = 10
      inputs = create_test_input(2, 224, 224, 3)
      with slim.arg_scope(resnet_utils.resnet_arg_scope()):
        scope_base = resnet_name + '_base'
        _, end_points_base = resnet(
            inputs,
            num_classes,
            global_pool=global_pool,
            min_base_depth=1,
            scope=scope_base)
        scope_test = resnet_name + '_test'
        _, end_points_test = resnet(
            inputs,
            num_classes,
            global_pool=global_pool,
            min_base_depth=1,
            depth_multiplier=depth_multiplier,
            scope=scope_test)
        for block in ['block1', 'block2', 'block3', 'block4']:
          block_name_base = scope_base + '/' + block
          block_name_test = scope_test + '/' + block
          self.assertTrue(block_name_base in end_points_base)
          self.assertTrue(block_name_test in end_points_test)
          self.assertEqual(
              len(end_points_base[block_name_base].get_shape().as_list()), 4)
          self.assertEqual(
              len(end_points_test[block_name_test].get_shape().as_list()), 4)
          self.assertListEqual(
              end_points_base[block_name_base].get_shape().as_list()[:3],
              end_points_test[block_name_test].get_shape().as_list()[:3])
          self.assertEqual(
              int(depth_multiplier *
                  end_points_base[block_name_base].get_shape().as_list()[3]),
              end_points_test[block_name_test].get_shape().as_list()[3])

  def testMinBaseDepth(self):
    resnets = [
        resnet_v1.resnet_v1_50, resnet_v1.resnet_v1_101,
        resnet_v1.resnet_v1_152, resnet_v1.resnet_v1_200
    ]
    resnet_names = [
        'resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152', 'resnet_v1_200'
    ]
    for resnet, resnet_name in zip(resnets, resnet_names):
      min_base_depth = 5
      global_pool = True
      num_classes = 10
      inputs = create_test_input(2, 224, 224, 3)
      with slim.arg_scope(resnet_utils.resnet_arg_scope()):
        _, end_points = resnet(
            inputs,
            num_classes,
            global_pool=global_pool,
            min_base_depth=min_base_depth,
            depth_multiplier=0,
            scope=resnet_name)
        for block in ['block1', 'block2', 'block3', 'block4']:
          block_name = resnet_name + '/' + block
          self.assertTrue(block_name in end_points)
          self.assertEqual(
              len(end_points[block_name].get_shape().as_list()), 4)
          # The output depth is 4 times base_depth.
          depth_expected = min_base_depth * 4
          self.assertEqual(
              end_points[block_name].get_shape().as_list()[3], depth_expected)
630
631
632

if __name__ == '__main__':
  tf.test.main()