resnet_v1_test.py 23.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.nets.resnet_v1."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

from nets import resnet_utils
from nets import resnet_v1

slim = tf.contrib.slim


def create_test_input(batch_size, height, width, channels):
  """Create test input tensor.

  Args:
    batch_size: The number of images per batch or `None` if unknown.
    height: The height of each image or `None` if unknown.
    width: The width of each image or `None` if unknown.
    channels: The number of channels per image or `None` if unknown.

  Returns:
    Either a placeholder `Tensor` of dimension
      [batch_size, height, width, channels] if any of the inputs are `None` or a
    constant `Tensor` with the mesh grid values along the spatial dimensions.
  """
  if None in [batch_size, height, width, channels]:
    return tf.placeholder(tf.float32, (batch_size, height, width, channels))
  else:
    return tf.to_float(
        np.tile(
            np.reshape(
                np.reshape(np.arange(height), [height, 1]) +
                np.reshape(np.arange(width), [1, width]),
                [1, height, width, 1]),
            [batch_size, 1, 1, channels]))


class ResnetUtilsTest(tf.test.TestCase):

  def testSubsampleThreeByThree(self):
    x = tf.reshape(tf.to_float(tf.range(9)), [1, 3, 3, 1])
    x = resnet_utils.subsample(x, 2)
    expected = tf.reshape(tf.constant([0, 2, 6, 8]), [1, 2, 2, 1])
    with self.test_session():
      self.assertAllClose(x.eval(), expected.eval())

  def testSubsampleFourByFour(self):
    x = tf.reshape(tf.to_float(tf.range(16)), [1, 4, 4, 1])
    x = resnet_utils.subsample(x, 2)
    expected = tf.reshape(tf.constant([0, 2, 8, 10]), [1, 2, 2, 1])
    with self.test_session():
      self.assertAllClose(x.eval(), expected.eval())

  def testConv2DSameEven(self):
    n, n2 = 4, 2

    # Input image.
    x = create_test_input(1, n, n, 1)

    # Convolution kernel.
    w = create_test_input(1, 3, 3, 1)
    w = tf.reshape(w, [3, 3, 1, 1])

    tf.get_variable('Conv/weights', initializer=w)
    tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
    tf.get_variable_scope().reuse_variables()

    y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
    y1_expected = tf.to_float([[14, 28, 43, 26],
                               [28, 48, 66, 37],
                               [43, 66, 84, 46],
                               [26, 37, 46, 22]])
    y1_expected = tf.reshape(y1_expected, [1, n, n, 1])

    y2 = resnet_utils.subsample(y1, 2)
    y2_expected = tf.to_float([[14, 43],
                               [43, 84]])
    y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])

    y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
    y3_expected = y2_expected

    y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
    y4_expected = tf.to_float([[48, 37],
                               [37, 22]])
    y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1])

    with self.test_session() as sess:
107
      sess.run(tf.global_variables_initializer())
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      self.assertAllClose(y1.eval(), y1_expected.eval())
      self.assertAllClose(y2.eval(), y2_expected.eval())
      self.assertAllClose(y3.eval(), y3_expected.eval())
      self.assertAllClose(y4.eval(), y4_expected.eval())

  def testConv2DSameOdd(self):
    n, n2 = 5, 3

    # Input image.
    x = create_test_input(1, n, n, 1)

    # Convolution kernel.
    w = create_test_input(1, 3, 3, 1)
    w = tf.reshape(w, [3, 3, 1, 1])

    tf.get_variable('Conv/weights', initializer=w)
    tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
    tf.get_variable_scope().reuse_variables()

    y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
    y1_expected = tf.to_float([[14, 28, 43, 58, 34],
                               [28, 48, 66, 84, 46],
                               [43, 66, 84, 102, 55],
                               [58, 84, 102, 120, 64],
                               [34, 46, 55, 64, 30]])
    y1_expected = tf.reshape(y1_expected, [1, n, n, 1])

    y2 = resnet_utils.subsample(y1, 2)
    y2_expected = tf.to_float([[14, 43, 34],
                               [43, 84, 55],
                               [34, 55, 30]])
    y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])

    y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
    y3_expected = y2_expected

    y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
    y4_expected = y2_expected

    with self.test_session() as sess:
148
      sess.run(tf.global_variables_initializer())
149
150
151
152
153
154
155
156
157
158
      self.assertAllClose(y1.eval(), y1_expected.eval())
      self.assertAllClose(y2.eval(), y2_expected.eval())
      self.assertAllClose(y3.eval(), y3_expected.eval())
      self.assertAllClose(y4.eval(), y4_expected.eval())

  def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
    """A plain ResNet without extra layers before or after the ResNet blocks."""
    with tf.variable_scope(scope, values=[inputs]):
      with slim.arg_scope([slim.conv2d], outputs_collections='end_points'):
        net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
derekjchow's avatar
derekjchow committed
159
        end_points = slim.utils.convert_collection_to_dict('end_points')
160
161
162
163
        return net, end_points

  def testEndPointsV1(self):
    """Test the end points of a tiny v1 bottleneck network."""
derekjchow's avatar
derekjchow committed
164
165
166
167
168
169
    blocks = [
        resnet_v1.resnet_v1_block(
            'block1', base_depth=1, num_units=2, stride=2),
        resnet_v1.resnet_v1_block(
            'block2', base_depth=2, num_units=2, stride=1),
    ]
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    inputs = create_test_input(2, 32, 16, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
    expected = [
        'tiny/block1/unit_1/bottleneck_v1/shortcut',
        'tiny/block1/unit_1/bottleneck_v1/conv1',
        'tiny/block1/unit_1/bottleneck_v1/conv2',
        'tiny/block1/unit_1/bottleneck_v1/conv3',
        'tiny/block1/unit_2/bottleneck_v1/conv1',
        'tiny/block1/unit_2/bottleneck_v1/conv2',
        'tiny/block1/unit_2/bottleneck_v1/conv3',
        'tiny/block2/unit_1/bottleneck_v1/shortcut',
        'tiny/block2/unit_1/bottleneck_v1/conv1',
        'tiny/block2/unit_1/bottleneck_v1/conv2',
        'tiny/block2/unit_1/bottleneck_v1/conv3',
        'tiny/block2/unit_2/bottleneck_v1/conv1',
        'tiny/block2/unit_2/bottleneck_v1/conv2',
        'tiny/block2/unit_2/bottleneck_v1/conv3']
pkulzc's avatar
pkulzc committed
188
    self.assertItemsEqual(expected, end_points.keys())
189
190
191
192
193
194
195

  def _stack_blocks_nondense(self, net, blocks):
    """A simplified ResNet Block stacker without output stride control."""
    for block in blocks:
      with tf.variable_scope(block.scope, 'block', [net]):
        for i, unit in enumerate(block.args):
          with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
derekjchow's avatar
derekjchow committed
196
            net = block.unit_fn(net, rate=1, **unit)
197
198
    return net

derekjchow's avatar
derekjchow committed
199
  def testAtrousValuesBottleneck(self):
200
201
202
203
204
205
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.
    """
derekjchow's avatar
derekjchow committed
206
    block = resnet_v1.resnet_v1_block
207
    blocks = [
derekjchow's avatar
derekjchow committed
208
209
210
211
        block('block1', base_depth=1, num_units=2, stride=2),
        block('block2', base_depth=2, num_units=2, stride=2),
        block('block3', base_depth=4, num_units=2, stride=2),
        block('block4', base_depth=8, num_units=2, stride=1),
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      with slim.arg_scope([slim.batch_norm], is_training=False):
        for output_stride in [1, 2, 4, 8, None]:
          with tf.Graph().as_default():
            with self.test_session() as sess:
              tf.set_random_seed(0)
              inputs = create_test_input(1, height, width, 3)
              # Dense feature extraction followed by subsampling.
              output = resnet_utils.stack_blocks_dense(inputs,
                                                       blocks,
                                                       output_stride)
              if output_stride is None:
                factor = 1
              else:
                factor = nominal_stride // output_stride

              output = resnet_utils.subsample(output, factor)
              # Make the two networks use the same weights.
              tf.get_variable_scope().reuse_variables()
              # Feature extraction at the nominal network rate.
              expected = self._stack_blocks_nondense(inputs, blocks)
239
              sess.run(tf.global_variables_initializer())
240
241
242
              output, expected = sess.run([output, expected])
              self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)

pkulzc's avatar
pkulzc committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
  def testStridingLastUnitVsSubsampleBlockEnd(self):
    """Compares subsampling at the block's last unit or block's end.

    Makes sure that the final output is the same when we use a stride at the
    last unit of a block vs. we subsample activations at the end of a block.
    """
    block = resnet_v1.resnet_v1_block

    blocks = [
        block('block1', base_depth=1, num_units=2, stride=2),
        block('block2', base_depth=2, num_units=2, stride=2),
        block('block3', base_depth=4, num_units=2, stride=2),
        block('block4', base_depth=8, num_units=2, stride=1),
    ]

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      with slim.arg_scope([slim.batch_norm], is_training=False):
        for output_stride in [1, 2, 4, 8, None]:
          with tf.Graph().as_default():
            with self.test_session() as sess:
              tf.set_random_seed(0)
              inputs = create_test_input(1, height, width, 3)

              # Subsampling at the last unit of the block.
              output = resnet_utils.stack_blocks_dense(
                  inputs, blocks, output_stride,
                  store_non_strided_activations=False,
                  outputs_collections='output')
              output_end_points = slim.utils.convert_collection_to_dict(
                  'output')

              # Make the two networks use the same weights.
              tf.get_variable_scope().reuse_variables()

              # Subsample activations at the end of the blocks.
              expected = resnet_utils.stack_blocks_dense(
                  inputs, blocks, output_stride,
                  store_non_strided_activations=True,
                  outputs_collections='expected')
              expected_end_points = slim.utils.convert_collection_to_dict(
                  'expected')

              sess.run(tf.global_variables_initializer())

              # Make sure that the final output is the same.
              output, expected = sess.run([output, expected])
              self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)

              # Make sure that intermediate block activations in
              # output_end_points are subsampled versions of the corresponding
              # ones in expected_end_points.
              for i, block in enumerate(blocks[:-1:]):
                output = output_end_points[block.scope]
                expected = expected_end_points[block.scope]
                atrous_activated = (output_stride is not None and
                                    2 ** i >= output_stride)
                if not atrous_activated:
                  expected = resnet_utils.subsample(expected, 2)
                output, expected = sess.run([output, expected])
                self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)

307
308
309
310
311
312
313
314
315
316
317

class ResnetCompleteNetworkTest(tf.test.TestCase):
  """Tests with complete small ResNet v1 networks."""

  def _resnet_small(self,
                    inputs,
                    num_classes=None,
                    is_training=True,
                    global_pool=True,
                    output_stride=None,
                    include_root_block=True,
Derek Chow's avatar
Derek Chow committed
318
                    spatial_squeeze=True,
319
320
321
                    reuse=None,
                    scope='resnet_v1_small'):
    """A shallow and thin ResNet v1 for faster tests."""
derekjchow's avatar
derekjchow committed
322
    block = resnet_v1.resnet_v1_block
323
    blocks = [
derekjchow's avatar
derekjchow committed
324
325
326
327
328
        block('block1', base_depth=1, num_units=3, stride=2),
        block('block2', base_depth=2, num_units=3, stride=2),
        block('block3', base_depth=4, num_units=3, stride=2),
        block('block4', base_depth=8, num_units=2, stride=1),
    ]
329
330
331
332
333
    return resnet_v1.resnet_v1(inputs, blocks, num_classes,
                               is_training=is_training,
                               global_pool=global_pool,
                               output_stride=output_stride,
                               include_root_block=include_root_block,
Derek Chow's avatar
Derek Chow committed
334
                               spatial_squeeze=spatial_squeeze,
335
336
337
338
339
340
341
342
343
344
                               reuse=reuse,
                               scope=scope)

  def testClassificationEndPoints(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      logits, end_points = self._resnet_small(inputs, num_classes,
                                              global_pool=global_pool,
Derek Chow's avatar
Derek Chow committed
345
                                              spatial_squeeze=False,
346
347
348
349
350
351
                                              scope='resnet')
    self.assertTrue(logits.op.name.startswith('resnet/logits'))
    self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
    self.assertTrue('predictions' in end_points)
    self.assertListEqual(end_points['predictions'].get_shape().as_list(),
                         [2, 1, 1, num_classes])
352
353
354
355
    self.assertTrue('global_pool' in end_points)
    self.assertListEqual(end_points['global_pool'].get_shape().as_list(),
                         [2, 1, 1, 32])

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  def testClassificationEndPointsWithNoBatchNormArgscope(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      logits, end_points = self._resnet_small(inputs, num_classes,
                                              global_pool=global_pool,
                                              spatial_squeeze=False,
                                              is_training=None,
                                              scope='resnet')
    self.assertTrue(logits.op.name.startswith('resnet/logits'))
    self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
    self.assertTrue('predictions' in end_points)
    self.assertListEqual(end_points['predictions'].get_shape().as_list(),
                         [2, 1, 1, num_classes])
    self.assertTrue('global_pool' in end_points)
    self.assertListEqual(end_points['global_pool'].get_shape().as_list(),
                         [2, 1, 1, 32])

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
  def testEndpointNames(self):
    # Like ResnetUtilsTest.testEndPointsV1(), but for the public API.
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
                                         scope='resnet')
    expected = ['resnet/conv1']
    for block in range(1, 5):
      for unit in range(1, 4 if block < 4 else 3):
        for conv in range(1, 4):
          expected.append('resnet/block%d/unit_%d/bottleneck_v1/conv%d' %
                          (block, unit, conv))
        expected.append('resnet/block%d/unit_%d/bottleneck_v1' % (block, unit))
      expected.append('resnet/block%d/unit_1/bottleneck_v1/shortcut' % block)
      expected.append('resnet/block%d' % block)
    expected.extend(['global_pool', 'resnet/logits', 'resnet/spatial_squeeze',
                     'predictions'])
    self.assertItemsEqual(end_points.keys(), expected)
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

  def testClassificationShapes(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 28, 28, 4],
          'resnet/block2': [2, 14, 14, 8],
          'resnet/block3': [2, 7, 7, 16],
          'resnet/block4': [2, 7, 7, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 321, 321, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
Derek Chow's avatar
Derek Chow committed
421
                                         spatial_squeeze=False,
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 21, 21, 8],
          'resnet/block3': [2, 11, 11, 16],
          'resnet/block4': [2, 11, 11, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testRootlessFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 128, 128, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs, num_classes,
                                         global_pool=global_pool,
                                         include_root_block=False,
Derek Chow's avatar
Derek Chow committed
440
                                         spatial_squeeze=False,
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 64, 64, 4],
          'resnet/block2': [2, 32, 32, 8],
          'resnet/block3': [2, 16, 16, 16],
          'resnet/block4': [2, 16, 16, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testAtrousFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    output_stride = 8
    inputs = create_test_input(2, 321, 321, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(inputs,
                                         num_classes,
                                         global_pool=global_pool,
                                         output_stride=output_stride,
Derek Chow's avatar
Derek Chow committed
461
                                         spatial_squeeze=False,
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
                                         scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 41, 41, 8],
          'resnet/block3': [2, 41, 41, 16],
          'resnet/block4': [2, 41, 41, 32]}
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)

  def testAtrousFullyConvolutionalValues(self):
    """Verify dense feature extraction with atrous convolution."""
    nominal_stride = 32
    for output_stride in [4, 8, 16, 32, None]:
      with slim.arg_scope(resnet_utils.resnet_arg_scope()):
        with tf.Graph().as_default():
          with self.test_session() as sess:
            tf.set_random_seed(0)
            inputs = create_test_input(2, 81, 81, 3)
            # Dense feature extraction followed by subsampling.
            output, _ = self._resnet_small(inputs, None, is_training=False,
                                           global_pool=False,
                                           output_stride=output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride
            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            tf.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected, _ = self._resnet_small(inputs, None, is_training=False,
                                             global_pool=False)
495
            sess.run(tf.global_variables_initializer())
496
497
498
499
500
501
502
503
504
505
506
507
            self.assertAllClose(output.eval(), expected.eval(),
                                atol=1e-4, rtol=1e-4)

  def testUnknownBatchSize(self):
    batch = 2
    height, width = 65, 65
    global_pool = True
    num_classes = 10
    inputs = create_test_input(None, height, width, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      logits, _ = self._resnet_small(inputs, num_classes,
                                     global_pool=global_pool,
Derek Chow's avatar
Derek Chow committed
508
                                     spatial_squeeze=False,
509
510
511
512
513
514
                                     scope='resnet')
    self.assertTrue(logits.op.name.startswith('resnet/logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, 1, 1, num_classes])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
515
      sess.run(tf.global_variables_initializer())
516
517
518
519
520
521
522
523
524
525
526
527
528
529
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 1, 1, num_classes))

  def testFullyConvolutionalUnknownHeightWidth(self):
    batch = 2
    height, width = 65, 65
    global_pool = False
    inputs = create_test_input(batch, None, None, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      output, _ = self._resnet_small(inputs, None, global_pool=global_pool)
    self.assertListEqual(output.get_shape().as_list(),
                         [batch, None, None, 32])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
530
      sess.run(tf.global_variables_initializer())
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
      output = sess.run(output, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 3, 3, 32))

  def testAtrousFullyConvolutionalUnknownHeightWidth(self):
    batch = 2
    height, width = 65, 65
    global_pool = False
    output_stride = 8
    inputs = create_test_input(batch, None, None, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      output, _ = self._resnet_small(inputs,
                                     None,
                                     global_pool=global_pool,
                                     output_stride=output_stride)
    self.assertListEqual(output.get_shape().as_list(),
                         [batch, None, None, 32])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
549
      sess.run(tf.global_variables_initializer())
550
551
552
553
554
555
      output = sess.run(output, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 9, 9, 32))


if __name__ == '__main__':
  tf.test.main()