nasnet_utils.py 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A custom module for some common operations used by NASNet.

Functions exposed in this file:
- calc_reduction_layers
- get_channel_index
- get_channel_dim
- global_avg_pool
- factorized_reduction
- drop_path

Classes exposed in this file:
- NasNetABaseCell
- NasNetANormalCell
- NasNetAReductionCell
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
35
36
from tensorflow.contrib import framework as contrib_framework
from tensorflow.contrib import slim as contrib_slim
37

38
39
arg_scope = contrib_framework.arg_scope
slim = contrib_slim
40
41
42
43

DATA_FORMAT_NCHW = 'NCHW'
DATA_FORMAT_NHWC = 'NHWC'
INVALID = 'null'
44
45
46
# The cap for tf.clip_by_value, it's hinted from the activation distribution
# that the majority of activation values are in the range [-6, 6].
CLIP_BY_VALUE_CAP = 6
47
48
49
50
51
52
53
54
55
56
57
58


def calc_reduction_layers(num_cells, num_reduction_layers):
  """Figure out what layers should have reductions."""
  reduction_layers = []
  for pool_num in range(1, num_reduction_layers + 1):
    layer_num = (float(pool_num) / (num_reduction_layers + 1)) * num_cells
    layer_num = int(layer_num)
    reduction_layers.append(layer_num)
  return reduction_layers


59
@contrib_framework.add_arg_scope
60
61
62
63
64
65
def get_channel_index(data_format=INVALID):
  assert data_format != INVALID
  axis = 3 if data_format == 'NHWC' else 1
  return axis


66
@contrib_framework.add_arg_scope
67
68
69
70
71
72
73
74
75
76
77
def get_channel_dim(shape, data_format=INVALID):
  assert data_format != INVALID
  assert len(shape) == 4
  if data_format == 'NHWC':
    return int(shape[3])
  elif data_format == 'NCHW':
    return int(shape[1])
  else:
    raise ValueError('Not a valid data_format', data_format)


78
@contrib_framework.add_arg_scope
79
80
81
82
83
84
85
86
87
88
89
def global_avg_pool(x, data_format=INVALID):
  """Average pool away the height and width spatial dimensions of x."""
  assert data_format != INVALID
  assert data_format in ['NHWC', 'NCHW']
  assert x.shape.ndims == 4
  if data_format == 'NHWC':
    return tf.reduce_mean(x, [1, 2])
  else:
    return tf.reduce_mean(x, [2, 3])


90
@contrib_framework.add_arg_scope
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def factorized_reduction(net, output_filters, stride, data_format=INVALID):
  """Reduces the shape of net without information loss due to striding."""
  assert data_format != INVALID
  if stride == 1:
    net = slim.conv2d(net, output_filters, 1, scope='path_conv')
    net = slim.batch_norm(net, scope='path_bn')
    return net
  if data_format == 'NHWC':
    stride_spec = [1, stride, stride, 1]
  else:
    stride_spec = [1, 1, stride, stride]

  # Skip path 1
  path1 = tf.nn.avg_pool(
      net, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format)
  path1 = slim.conv2d(path1, int(output_filters / 2), 1, scope='path1_conv')

  # Skip path 2
  # First pad with 0's on the right and bottom, then shift the filter to
  # include those 0's that were added.
  if data_format == 'NHWC':
    pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]]
    path2 = tf.pad(net, pad_arr)[:, 1:, 1:, :]
    concat_axis = 3
  else:
    pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]]
    path2 = tf.pad(net, pad_arr)[:, :, 1:, 1:]
    concat_axis = 1

  path2 = tf.nn.avg_pool(
      path2, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format)
122
123
124
125

  # If odd number of filters, add an additional one to the second path.
  final_filter_size = int(output_filters / 2) + int(output_filters % 2)
  path2 = slim.conv2d(path2, final_filter_size, 1, scope='path2_conv')
126
127
128
129
130
131
132

  # Concat and apply BN
  final_path = tf.concat(values=[path1, path2], axis=concat_axis)
  final_path = slim.batch_norm(final_path, scope='final_path_bn')
  return final_path


133
@contrib_framework.add_arg_scope
134
135
136
137
138
139
140
def drop_path(net, keep_prob, is_training=True):
  """Drops out a whole example hiddenstate with the specified probability."""
  if is_training:
    batch_size = tf.shape(net)[0]
    noise_shape = [batch_size, 1, 1, 1]
    random_tensor = keep_prob
    random_tensor += tf.random_uniform(noise_shape, dtype=tf.float32)
141
142
143
144
    binary_tensor = tf.cast(tf.floor(random_tensor), net.dtype)
    keep_prob_inv = tf.cast(1.0 / keep_prob, net.dtype)
    net = net * keep_prob_inv * binary_tensor

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  return net


def _operation_to_filter_shape(operation):
  splitted_operation = operation.split('x')
  filter_shape = int(splitted_operation[0][-1])
  assert filter_shape == int(
      splitted_operation[1][0]), 'Rectangular filters not supported.'
  return filter_shape


def _operation_to_num_layers(operation):
  splitted_operation = operation.split('_')
  if 'x' in splitted_operation[-1]:
    return 1
  return int(splitted_operation[-1])


def _operation_to_info(operation):
  """Takes in operation name and returns meta information.

  An example would be 'separable_3x3_4' -> (3, 4).

  Args:
    operation: String that corresponds to convolution operation.

  Returns:
    Tuple of (filter shape, num layers).
  """
  num_layers = _operation_to_num_layers(operation)
  filter_shape = _operation_to_filter_shape(operation)
  return num_layers, filter_shape


179
180
def _stacked_separable_conv(net, stride, operation, filter_size,
                            use_bounded_activation):
181
182
  """Takes in an operations and parses it to the correct sep operation."""
  num_layers, kernel_size = _operation_to_info(operation)
183
  activation_fn = tf.nn.relu6 if use_bounded_activation else tf.nn.relu
184
  for layer_num in range(num_layers - 1):
185
    net = activation_fn(net)
186
187
188
189
190
191
192
193
194
195
    net = slim.separable_conv2d(
        net,
        filter_size,
        kernel_size,
        depth_multiplier=1,
        scope='separable_{0}x{0}_{1}'.format(kernel_size, layer_num + 1),
        stride=stride)
    net = slim.batch_norm(
        net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, layer_num + 1))
    stride = 1
196
  net = activation_fn(net)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  net = slim.separable_conv2d(
      net,
      filter_size,
      kernel_size,
      depth_multiplier=1,
      scope='separable_{0}x{0}_{1}'.format(kernel_size, num_layers),
      stride=stride)
  net = slim.batch_norm(
      net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, num_layers))
  return net


def _operation_to_pooling_type(operation):
  """Takes in the operation string and returns the pooling type."""
  splitted_operation = operation.split('_')
  return splitted_operation[0]


def _operation_to_pooling_shape(operation):
  """Takes in the operation string and returns the pooling kernel shape."""
  splitted_operation = operation.split('_')
  shape = splitted_operation[-1]
  assert 'x' in shape
  filter_height, filter_width = shape.split('x')
  assert filter_height == filter_width
  return int(filter_height)


def _operation_to_pooling_info(operation):
  """Parses the pooling operation string to return its type and shape."""
  pooling_type = _operation_to_pooling_type(operation)
  pooling_shape = _operation_to_pooling_shape(operation)
  return pooling_type, pooling_shape


232
def _pooling(net, stride, operation, use_bounded_activation):
233
234
235
  """Parses operation and performs the correct pooling operation on net."""
  padding = 'SAME'
  pooling_type, pooling_shape = _operation_to_pooling_info(operation)
236
237
  if use_bounded_activation:
    net = tf.nn.relu6(net)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  if pooling_type == 'avg':
    net = slim.avg_pool2d(net, pooling_shape, stride=stride, padding=padding)
  elif pooling_type == 'max':
    net = slim.max_pool2d(net, pooling_shape, stride=stride, padding=padding)
  else:
    raise NotImplementedError('Unimplemented pooling type: ', pooling_type)
  return net


class NasNetABaseCell(object):
  """NASNet Cell class that is used as a 'layer' in image architectures.

  Args:
    num_conv_filters: The number of filters for each convolution operation.
    operations: List of operations that are performed in the NASNet Cell in
      order.
    used_hiddenstates: Binary array that signals if the hiddenstate was used
      within the cell. This is used to determine what outputs of the cell
      should be concatenated together.
    hiddenstate_indices: Determines what hiddenstates should be combined
      together with the specified operations to create the NASNet cell.
259
260
    use_bounded_activation: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.
261
262
263
264
  """

  def __init__(self, num_conv_filters, operations, used_hiddenstates,
               hiddenstate_indices, drop_path_keep_prob, total_num_cells,
265
               total_training_steps, use_bounded_activation=False):
266
267
268
269
270
271
272
    self._num_conv_filters = num_conv_filters
    self._operations = operations
    self._used_hiddenstates = used_hiddenstates
    self._hiddenstate_indices = hiddenstate_indices
    self._drop_path_keep_prob = drop_path_keep_prob
    self._total_num_cells = total_num_cells
    self._total_training_steps = total_training_steps
273
    self._use_bounded_activation = use_bounded_activation
274
275
276
277
278
279
280
281
282
283

  def _reduce_prev_layer(self, prev_layer, curr_layer):
    """Matches dimension of prev_layer to the curr_layer."""
    # Set the prev layer to the current layer if it is none
    if prev_layer is None:
      return curr_layer
    curr_num_filters = self._filter_size
    prev_num_filters = get_channel_dim(prev_layer.shape)
    curr_filter_shape = int(curr_layer.shape[2])
    prev_filter_shape = int(prev_layer.shape[2])
284
    activation_fn = tf.nn.relu6 if self._use_bounded_activation else tf.nn.relu
285
    if curr_filter_shape != prev_filter_shape:
286
      prev_layer = activation_fn(prev_layer)
287
288
289
      prev_layer = factorized_reduction(
          prev_layer, curr_num_filters, stride=2)
    elif curr_num_filters != prev_num_filters:
290
      prev_layer = activation_fn(prev_layer)
291
292
293
294
295
296
297
298
299
300
301
302
      prev_layer = slim.conv2d(
          prev_layer, curr_num_filters, 1, scope='prev_1x1')
      prev_layer = slim.batch_norm(prev_layer, scope='prev_bn')
    return prev_layer

  def _cell_base(self, net, prev_layer):
    """Runs the beginning of the conv cell before the predicted ops are run."""
    num_filters = self._filter_size

    # Check to be sure prev layer stuff is setup correctly
    prev_layer = self._reduce_prev_layer(prev_layer, net)

303
    net = tf.nn.relu6(net) if self._use_bounded_activation else tf.nn.relu(net)
304
305
    net = slim.conv2d(net, num_filters, 1, scope='1x1')
    net = slim.batch_norm(net, scope='beginning_bn')
306
307
    # num_or_size_splits=1
    net = [net]
308
309
310
311
    net.append(prev_layer)
    return net

  def __call__(self, net, scope=None, filter_scaling=1, stride=1,
312
               prev_layer=None, cell_num=-1, current_step=None):
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    """Runs the conv cell."""
    self._cell_num = cell_num
    self._filter_scaling = filter_scaling
    self._filter_size = int(self._num_conv_filters * filter_scaling)

    i = 0
    with tf.variable_scope(scope):
      net = self._cell_base(net, prev_layer)
      for iteration in range(5):
        with tf.variable_scope('comb_iter_{}'.format(iteration)):
          left_hiddenstate_idx, right_hiddenstate_idx = (
              self._hiddenstate_indices[i],
              self._hiddenstate_indices[i + 1])
          original_input_left = left_hiddenstate_idx < 2
          original_input_right = right_hiddenstate_idx < 2
          h1 = net[left_hiddenstate_idx]
          h2 = net[right_hiddenstate_idx]

          operation_left = self._operations[i]
          operation_right = self._operations[i+1]
          i += 2
          # Apply conv operations
          with tf.variable_scope('left'):
            h1 = self._apply_conv_operation(h1, operation_left,
337
338
                                            stride, original_input_left,
                                            current_step)
339
340
          with tf.variable_scope('right'):
            h2 = self._apply_conv_operation(h2, operation_right,
341
342
                                            stride, original_input_right,
                                            current_step)
343
344
345
346

          # Combine hidden states using 'add'.
          with tf.variable_scope('combine'):
            h = h1 + h2
347
348
            if self._use_bounded_activation:
              h = tf.nn.relu6(h)
349
350
351
352
353
354
355
356
357
358

          # Add hiddenstate to the list of hiddenstates we can choose from
          net.append(h)

      with tf.variable_scope('cell_output'):
        net = self._combine_unused_states(net)

      return net

  def _apply_conv_operation(self, net, operation,
359
                            stride, is_from_original_input, current_step):
360
361
362
363
364
365
366
    """Applies the predicted conv operation to net."""
    # Dont stride if this is not one of the original hiddenstates
    if stride > 1 and not is_from_original_input:
      stride = 1
    input_filters = get_channel_dim(net.shape)
    filter_size = self._filter_size
    if 'separable' in operation:
367
368
369
370
      net = _stacked_separable_conv(net, stride, operation, filter_size,
                                    self._use_bounded_activation)
      if self._use_bounded_activation:
        net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP)
371
    elif operation in ['none']:
372
373
      if self._use_bounded_activation:
        net = tf.nn.relu6(net)
374
375
      # Check if a stride is needed, then use a strided 1x1 here
      if stride > 1 or (input_filters != filter_size):
376
377
        if not self._use_bounded_activation:
          net = tf.nn.relu(net)
378
379
        net = slim.conv2d(net, filter_size, 1, stride=stride, scope='1x1')
        net = slim.batch_norm(net, scope='bn_1')
380
381
        if self._use_bounded_activation:
          net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP)
382
    elif 'pool' in operation:
383
      net = _pooling(net, stride, operation, self._use_bounded_activation)
384
385
386
      if input_filters != filter_size:
        net = slim.conv2d(net, filter_size, 1, stride=1, scope='1x1')
        net = slim.batch_norm(net, scope='bn_1')
387
388
      if self._use_bounded_activation:
        net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP)
389
390
391
392
    else:
      raise ValueError('Unimplemented operation', operation)

    if operation != 'none':
393
      net = self._apply_drop_path(net, current_step=current_step)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    return net

  def _combine_unused_states(self, net):
    """Concatenate the unused hidden states of the cell."""
    used_hiddenstates = self._used_hiddenstates

    final_height = int(net[-1].shape[2])
    final_num_filters = get_channel_dim(net[-1].shape)
    assert len(used_hiddenstates) == len(net)
    for idx, used_h in enumerate(used_hiddenstates):
      curr_height = int(net[idx].shape[2])
      curr_num_filters = get_channel_dim(net[idx].shape)

      # Determine if a reduction should be applied to make the number of
      # filters match.
      should_reduce = final_num_filters != curr_num_filters
      should_reduce = (final_height != curr_height) or should_reduce
      should_reduce = should_reduce and not used_h
      if should_reduce:
        stride = 2 if final_height != curr_height else 1
        with tf.variable_scope('reduction_{}'.format(idx)):
          net[idx] = factorized_reduction(
              net[idx], final_num_filters, stride)

    states_to_combine = (
        [h for h, is_used in zip(net, used_hiddenstates) if not is_used])

    # Return the concat of all the states
    concat_axis = get_channel_index()
    net = tf.concat(values=states_to_combine, axis=concat_axis)
    return net

426
  @contrib_framework.add_arg_scope  # No public API. For internal use only.
pkulzc's avatar
pkulzc committed
427
  def _apply_drop_path(self, net, current_step=None,
428
                       use_summaries=False, drop_connect_version='v3'):
pkulzc's avatar
pkulzc committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    """Apply drop_path regularization.

    Args:
      net: the Tensor that gets drop_path regularization applied.
      current_step: a float32 Tensor with the current global_step value,
        to be divided by hparams.total_training_steps. Usually None, which
        defaults to tf.train.get_or_create_global_step() properly casted.
      use_summaries: a Python boolean. If set to False, no summaries are output.
      drop_connect_version: one of 'v1', 'v2', 'v3', controlling whether
        the dropout rate is scaled by current_step (v1), layer (v2), or
        both (v3, the default).

    Returns:
      The dropped-out value of `net`.
    """
444
445
    drop_path_keep_prob = self._drop_path_keep_prob
    if drop_path_keep_prob < 1.0:
pkulzc's avatar
pkulzc committed
446
447
448
449
450
451
452
453
454
455
456
457
458
      assert drop_connect_version in ['v1', 'v2', 'v3']
      if drop_connect_version in ['v2', 'v3']:
        # Scale keep prob by layer number
        assert self._cell_num != -1
        # The added 2 is for the reduction cells
        num_cells = self._total_num_cells
        layer_ratio = (self._cell_num + 1)/float(num_cells)
        if use_summaries:
          with tf.device('/cpu:0'):
            tf.summary.scalar('layer_ratio', layer_ratio)
        drop_path_keep_prob = 1 - layer_ratio * (1 - drop_path_keep_prob)
      if drop_connect_version in ['v1', 'v3']:
        # Decrease the keep probability over time
459
460
461
        if current_step is None:
          current_step = tf.train.get_or_create_global_step()
        current_step = tf.cast(current_step, tf.float32)
pkulzc's avatar
pkulzc committed
462
463
464
465
466
467
468
469
470
471
        drop_path_burn_in_steps = self._total_training_steps
        current_ratio = current_step / drop_path_burn_in_steps
        current_ratio = tf.minimum(1.0, current_ratio)
        if use_summaries:
          with tf.device('/cpu:0'):
            tf.summary.scalar('current_ratio', current_ratio)
        drop_path_keep_prob = (1 - current_ratio * (1 - drop_path_keep_prob))
      if use_summaries:
        with tf.device('/cpu:0'):
          tf.summary.scalar('drop_path_keep_prob', drop_path_keep_prob)
472
473
474
475
476
477
478
479
      net = drop_path(net, drop_path_keep_prob)
    return net


class NasNetANormalCell(NasNetABaseCell):
  """NASNetA Normal Cell."""

  def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells,
480
               total_training_steps, use_bounded_activation=False):
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    operations = ['separable_5x5_2',
                  'separable_3x3_2',
                  'separable_5x5_2',
                  'separable_3x3_2',
                  'avg_pool_3x3',
                  'none',
                  'avg_pool_3x3',
                  'avg_pool_3x3',
                  'separable_3x3_2',
                  'none']
    used_hiddenstates = [1, 0, 0, 0, 0, 0, 0]
    hiddenstate_indices = [0, 1, 1, 1, 0, 1, 1, 1, 0, 0]
    super(NasNetANormalCell, self).__init__(num_conv_filters, operations,
                                            used_hiddenstates,
                                            hiddenstate_indices,
                                            drop_path_keep_prob,
                                            total_num_cells,
498
499
                                            total_training_steps,
                                            use_bounded_activation)
500
501
502
503
504
505


class NasNetAReductionCell(NasNetABaseCell):
  """NASNetA Reduction Cell."""

  def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells,
506
               total_training_steps, use_bounded_activation=False):
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    operations = ['separable_5x5_2',
                  'separable_7x7_2',
                  'max_pool_3x3',
                  'separable_7x7_2',
                  'avg_pool_3x3',
                  'separable_5x5_2',
                  'none',
                  'avg_pool_3x3',
                  'separable_3x3_2',
                  'max_pool_3x3']
    used_hiddenstates = [1, 1, 1, 0, 0, 0, 0]
    hiddenstate_indices = [0, 1, 0, 1, 0, 1, 3, 2, 2, 0]
    super(NasNetAReductionCell, self).__init__(num_conv_filters, operations,
                                               used_hiddenstates,
                                               hiddenstate_indices,
                                               drop_path_keep_prob,
                                               total_num_cells,
524
525
                                               total_training_steps,
                                               use_bounded_activation)