nasnet_utils.py 19.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A custom module for some common operations used by NASNet.

Functions exposed in this file:
- calc_reduction_layers
- get_channel_index
- get_channel_dim
- global_avg_pool
- factorized_reduction
- drop_path

Classes exposed in this file:
- NasNetABaseCell
- NasNetANormalCell
- NasNetAReductionCell
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


arg_scope = tf.contrib.framework.arg_scope
slim = tf.contrib.slim

DATA_FORMAT_NCHW = 'NCHW'
DATA_FORMAT_NHWC = 'NHWC'
INVALID = 'null'
43
44
45
# The cap for tf.clip_by_value, it's hinted from the activation distribution
# that the majority of activation values are in the range [-6, 6].
CLIP_BY_VALUE_CAP = 6
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120


def calc_reduction_layers(num_cells, num_reduction_layers):
  """Figure out what layers should have reductions."""
  reduction_layers = []
  for pool_num in range(1, num_reduction_layers + 1):
    layer_num = (float(pool_num) / (num_reduction_layers + 1)) * num_cells
    layer_num = int(layer_num)
    reduction_layers.append(layer_num)
  return reduction_layers


@tf.contrib.framework.add_arg_scope
def get_channel_index(data_format=INVALID):
  assert data_format != INVALID
  axis = 3 if data_format == 'NHWC' else 1
  return axis


@tf.contrib.framework.add_arg_scope
def get_channel_dim(shape, data_format=INVALID):
  assert data_format != INVALID
  assert len(shape) == 4
  if data_format == 'NHWC':
    return int(shape[3])
  elif data_format == 'NCHW':
    return int(shape[1])
  else:
    raise ValueError('Not a valid data_format', data_format)


@tf.contrib.framework.add_arg_scope
def global_avg_pool(x, data_format=INVALID):
  """Average pool away the height and width spatial dimensions of x."""
  assert data_format != INVALID
  assert data_format in ['NHWC', 'NCHW']
  assert x.shape.ndims == 4
  if data_format == 'NHWC':
    return tf.reduce_mean(x, [1, 2])
  else:
    return tf.reduce_mean(x, [2, 3])


@tf.contrib.framework.add_arg_scope
def factorized_reduction(net, output_filters, stride, data_format=INVALID):
  """Reduces the shape of net without information loss due to striding."""
  assert data_format != INVALID
  if stride == 1:
    net = slim.conv2d(net, output_filters, 1, scope='path_conv')
    net = slim.batch_norm(net, scope='path_bn')
    return net
  if data_format == 'NHWC':
    stride_spec = [1, stride, stride, 1]
  else:
    stride_spec = [1, 1, stride, stride]

  # Skip path 1
  path1 = tf.nn.avg_pool(
      net, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format)
  path1 = slim.conv2d(path1, int(output_filters / 2), 1, scope='path1_conv')

  # Skip path 2
  # First pad with 0's on the right and bottom, then shift the filter to
  # include those 0's that were added.
  if data_format == 'NHWC':
    pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]]
    path2 = tf.pad(net, pad_arr)[:, 1:, 1:, :]
    concat_axis = 3
  else:
    pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]]
    path2 = tf.pad(net, pad_arr)[:, :, 1:, 1:]
    concat_axis = 1

  path2 = tf.nn.avg_pool(
      path2, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format)
121
122
123
124

  # If odd number of filters, add an additional one to the second path.
  final_filter_size = int(output_filters / 2) + int(output_filters % 2)
  path2 = slim.conv2d(path2, final_filter_size, 1, scope='path2_conv')
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

  # Concat and apply BN
  final_path = tf.concat(values=[path1, path2], axis=concat_axis)
  final_path = slim.batch_norm(final_path, scope='final_path_bn')
  return final_path


@tf.contrib.framework.add_arg_scope
def drop_path(net, keep_prob, is_training=True):
  """Drops out a whole example hiddenstate with the specified probability."""
  if is_training:
    batch_size = tf.shape(net)[0]
    noise_shape = [batch_size, 1, 1, 1]
    random_tensor = keep_prob
    random_tensor += tf.random_uniform(noise_shape, dtype=tf.float32)
140
141
142
143
    binary_tensor = tf.cast(tf.floor(random_tensor), net.dtype)
    keep_prob_inv = tf.cast(1.0 / keep_prob, net.dtype)
    net = net * keep_prob_inv * binary_tensor

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
  return net


def _operation_to_filter_shape(operation):
  splitted_operation = operation.split('x')
  filter_shape = int(splitted_operation[0][-1])
  assert filter_shape == int(
      splitted_operation[1][0]), 'Rectangular filters not supported.'
  return filter_shape


def _operation_to_num_layers(operation):
  splitted_operation = operation.split('_')
  if 'x' in splitted_operation[-1]:
    return 1
  return int(splitted_operation[-1])


def _operation_to_info(operation):
  """Takes in operation name and returns meta information.

  An example would be 'separable_3x3_4' -> (3, 4).

  Args:
    operation: String that corresponds to convolution operation.

  Returns:
    Tuple of (filter shape, num layers).
  """
  num_layers = _operation_to_num_layers(operation)
  filter_shape = _operation_to_filter_shape(operation)
  return num_layers, filter_shape


178
179
def _stacked_separable_conv(net, stride, operation, filter_size,
                            use_bounded_activation):
180
181
  """Takes in an operations and parses it to the correct sep operation."""
  num_layers, kernel_size = _operation_to_info(operation)
182
  activation_fn = tf.nn.relu6 if use_bounded_activation else tf.nn.relu
183
  for layer_num in range(num_layers - 1):
184
    net = activation_fn(net)
185
186
187
188
189
190
191
192
193
194
    net = slim.separable_conv2d(
        net,
        filter_size,
        kernel_size,
        depth_multiplier=1,
        scope='separable_{0}x{0}_{1}'.format(kernel_size, layer_num + 1),
        stride=stride)
    net = slim.batch_norm(
        net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, layer_num + 1))
    stride = 1
195
  net = activation_fn(net)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  net = slim.separable_conv2d(
      net,
      filter_size,
      kernel_size,
      depth_multiplier=1,
      scope='separable_{0}x{0}_{1}'.format(kernel_size, num_layers),
      stride=stride)
  net = slim.batch_norm(
      net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, num_layers))
  return net


def _operation_to_pooling_type(operation):
  """Takes in the operation string and returns the pooling type."""
  splitted_operation = operation.split('_')
  return splitted_operation[0]


def _operation_to_pooling_shape(operation):
  """Takes in the operation string and returns the pooling kernel shape."""
  splitted_operation = operation.split('_')
  shape = splitted_operation[-1]
  assert 'x' in shape
  filter_height, filter_width = shape.split('x')
  assert filter_height == filter_width
  return int(filter_height)


def _operation_to_pooling_info(operation):
  """Parses the pooling operation string to return its type and shape."""
  pooling_type = _operation_to_pooling_type(operation)
  pooling_shape = _operation_to_pooling_shape(operation)
  return pooling_type, pooling_shape


231
def _pooling(net, stride, operation, use_bounded_activation):
232
233
234
  """Parses operation and performs the correct pooling operation on net."""
  padding = 'SAME'
  pooling_type, pooling_shape = _operation_to_pooling_info(operation)
235
236
  if use_bounded_activation:
    net = tf.nn.relu6(net)
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  if pooling_type == 'avg':
    net = slim.avg_pool2d(net, pooling_shape, stride=stride, padding=padding)
  elif pooling_type == 'max':
    net = slim.max_pool2d(net, pooling_shape, stride=stride, padding=padding)
  else:
    raise NotImplementedError('Unimplemented pooling type: ', pooling_type)
  return net


class NasNetABaseCell(object):
  """NASNet Cell class that is used as a 'layer' in image architectures.

  Args:
    num_conv_filters: The number of filters for each convolution operation.
    operations: List of operations that are performed in the NASNet Cell in
      order.
    used_hiddenstates: Binary array that signals if the hiddenstate was used
      within the cell. This is used to determine what outputs of the cell
      should be concatenated together.
    hiddenstate_indices: Determines what hiddenstates should be combined
      together with the specified operations to create the NASNet cell.
258
259
    use_bounded_activation: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.
260
261
262
263
  """

  def __init__(self, num_conv_filters, operations, used_hiddenstates,
               hiddenstate_indices, drop_path_keep_prob, total_num_cells,
264
               total_training_steps, use_bounded_activation=False):
265
266
267
268
269
270
271
    self._num_conv_filters = num_conv_filters
    self._operations = operations
    self._used_hiddenstates = used_hiddenstates
    self._hiddenstate_indices = hiddenstate_indices
    self._drop_path_keep_prob = drop_path_keep_prob
    self._total_num_cells = total_num_cells
    self._total_training_steps = total_training_steps
272
    self._use_bounded_activation = use_bounded_activation
273
274
275
276
277
278
279
280
281
282

  def _reduce_prev_layer(self, prev_layer, curr_layer):
    """Matches dimension of prev_layer to the curr_layer."""
    # Set the prev layer to the current layer if it is none
    if prev_layer is None:
      return curr_layer
    curr_num_filters = self._filter_size
    prev_num_filters = get_channel_dim(prev_layer.shape)
    curr_filter_shape = int(curr_layer.shape[2])
    prev_filter_shape = int(prev_layer.shape[2])
283
    activation_fn = tf.nn.relu6 if self._use_bounded_activation else tf.nn.relu
284
    if curr_filter_shape != prev_filter_shape:
285
      prev_layer = activation_fn(prev_layer)
286
287
288
      prev_layer = factorized_reduction(
          prev_layer, curr_num_filters, stride=2)
    elif curr_num_filters != prev_num_filters:
289
      prev_layer = activation_fn(prev_layer)
290
291
292
293
294
295
296
297
298
299
300
301
      prev_layer = slim.conv2d(
          prev_layer, curr_num_filters, 1, scope='prev_1x1')
      prev_layer = slim.batch_norm(prev_layer, scope='prev_bn')
    return prev_layer

  def _cell_base(self, net, prev_layer):
    """Runs the beginning of the conv cell before the predicted ops are run."""
    num_filters = self._filter_size

    # Check to be sure prev layer stuff is setup correctly
    prev_layer = self._reduce_prev_layer(prev_layer, net)

302
    net = tf.nn.relu6(net) if self._use_bounded_activation else tf.nn.relu(net)
303
304
    net = slim.conv2d(net, num_filters, 1, scope='1x1')
    net = slim.batch_norm(net, scope='beginning_bn')
305
306
    # num_or_size_splits=1
    net = [net]
307
308
309
310
    net.append(prev_layer)
    return net

  def __call__(self, net, scope=None, filter_scaling=1, stride=1,
311
               prev_layer=None, cell_num=-1, current_step=None):
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    """Runs the conv cell."""
    self._cell_num = cell_num
    self._filter_scaling = filter_scaling
    self._filter_size = int(self._num_conv_filters * filter_scaling)

    i = 0
    with tf.variable_scope(scope):
      net = self._cell_base(net, prev_layer)
      for iteration in range(5):
        with tf.variable_scope('comb_iter_{}'.format(iteration)):
          left_hiddenstate_idx, right_hiddenstate_idx = (
              self._hiddenstate_indices[i],
              self._hiddenstate_indices[i + 1])
          original_input_left = left_hiddenstate_idx < 2
          original_input_right = right_hiddenstate_idx < 2
          h1 = net[left_hiddenstate_idx]
          h2 = net[right_hiddenstate_idx]

          operation_left = self._operations[i]
          operation_right = self._operations[i+1]
          i += 2
          # Apply conv operations
          with tf.variable_scope('left'):
            h1 = self._apply_conv_operation(h1, operation_left,
336
337
                                            stride, original_input_left,
                                            current_step)
338
339
          with tf.variable_scope('right'):
            h2 = self._apply_conv_operation(h2, operation_right,
340
341
                                            stride, original_input_right,
                                            current_step)
342
343
344
345

          # Combine hidden states using 'add'.
          with tf.variable_scope('combine'):
            h = h1 + h2
346
347
            if self._use_bounded_activation:
              h = tf.nn.relu6(h)
348
349
350
351
352
353
354
355
356
357

          # Add hiddenstate to the list of hiddenstates we can choose from
          net.append(h)

      with tf.variable_scope('cell_output'):
        net = self._combine_unused_states(net)

      return net

  def _apply_conv_operation(self, net, operation,
358
                            stride, is_from_original_input, current_step):
359
360
361
362
363
364
365
    """Applies the predicted conv operation to net."""
    # Dont stride if this is not one of the original hiddenstates
    if stride > 1 and not is_from_original_input:
      stride = 1
    input_filters = get_channel_dim(net.shape)
    filter_size = self._filter_size
    if 'separable' in operation:
366
367
368
369
      net = _stacked_separable_conv(net, stride, operation, filter_size,
                                    self._use_bounded_activation)
      if self._use_bounded_activation:
        net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP)
370
    elif operation in ['none']:
371
372
      if self._use_bounded_activation:
        net = tf.nn.relu6(net)
373
374
      # Check if a stride is needed, then use a strided 1x1 here
      if stride > 1 or (input_filters != filter_size):
375
376
        if not self._use_bounded_activation:
          net = tf.nn.relu(net)
377
378
        net = slim.conv2d(net, filter_size, 1, stride=stride, scope='1x1')
        net = slim.batch_norm(net, scope='bn_1')
379
380
        if self._use_bounded_activation:
          net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP)
381
    elif 'pool' in operation:
382
      net = _pooling(net, stride, operation, self._use_bounded_activation)
383
384
385
      if input_filters != filter_size:
        net = slim.conv2d(net, filter_size, 1, stride=1, scope='1x1')
        net = slim.batch_norm(net, scope='bn_1')
386
387
      if self._use_bounded_activation:
        net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP)
388
389
390
391
    else:
      raise ValueError('Unimplemented operation', operation)

    if operation != 'none':
392
      net = self._apply_drop_path(net, current_step=current_step)
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    return net

  def _combine_unused_states(self, net):
    """Concatenate the unused hidden states of the cell."""
    used_hiddenstates = self._used_hiddenstates

    final_height = int(net[-1].shape[2])
    final_num_filters = get_channel_dim(net[-1].shape)
    assert len(used_hiddenstates) == len(net)
    for idx, used_h in enumerate(used_hiddenstates):
      curr_height = int(net[idx].shape[2])
      curr_num_filters = get_channel_dim(net[idx].shape)

      # Determine if a reduction should be applied to make the number of
      # filters match.
      should_reduce = final_num_filters != curr_num_filters
      should_reduce = (final_height != curr_height) or should_reduce
      should_reduce = should_reduce and not used_h
      if should_reduce:
        stride = 2 if final_height != curr_height else 1
        with tf.variable_scope('reduction_{}'.format(idx)):
          net[idx] = factorized_reduction(
              net[idx], final_num_filters, stride)

    states_to_combine = (
        [h for h, is_used in zip(net, used_hiddenstates) if not is_used])

    # Return the concat of all the states
    concat_axis = get_channel_index()
    net = tf.concat(values=states_to_combine, axis=concat_axis)
    return net

pkulzc's avatar
pkulzc committed
425
426
  @tf.contrib.framework.add_arg_scope  # No public API. For internal use only.
  def _apply_drop_path(self, net, current_step=None,
427
                       use_summaries=False, drop_connect_version='v3'):
pkulzc's avatar
pkulzc committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    """Apply drop_path regularization.

    Args:
      net: the Tensor that gets drop_path regularization applied.
      current_step: a float32 Tensor with the current global_step value,
        to be divided by hparams.total_training_steps. Usually None, which
        defaults to tf.train.get_or_create_global_step() properly casted.
      use_summaries: a Python boolean. If set to False, no summaries are output.
      drop_connect_version: one of 'v1', 'v2', 'v3', controlling whether
        the dropout rate is scaled by current_step (v1), layer (v2), or
        both (v3, the default).

    Returns:
      The dropped-out value of `net`.
    """
443
444
    drop_path_keep_prob = self._drop_path_keep_prob
    if drop_path_keep_prob < 1.0:
pkulzc's avatar
pkulzc committed
445
446
447
448
449
450
451
452
453
454
455
456
457
      assert drop_connect_version in ['v1', 'v2', 'v3']
      if drop_connect_version in ['v2', 'v3']:
        # Scale keep prob by layer number
        assert self._cell_num != -1
        # The added 2 is for the reduction cells
        num_cells = self._total_num_cells
        layer_ratio = (self._cell_num + 1)/float(num_cells)
        if use_summaries:
          with tf.device('/cpu:0'):
            tf.summary.scalar('layer_ratio', layer_ratio)
        drop_path_keep_prob = 1 - layer_ratio * (1 - drop_path_keep_prob)
      if drop_connect_version in ['v1', 'v3']:
        # Decrease the keep probability over time
458
459
460
        if current_step is None:
          current_step = tf.train.get_or_create_global_step()
        current_step = tf.cast(current_step, tf.float32)
pkulzc's avatar
pkulzc committed
461
462
463
464
465
466
467
468
469
470
        drop_path_burn_in_steps = self._total_training_steps
        current_ratio = current_step / drop_path_burn_in_steps
        current_ratio = tf.minimum(1.0, current_ratio)
        if use_summaries:
          with tf.device('/cpu:0'):
            tf.summary.scalar('current_ratio', current_ratio)
        drop_path_keep_prob = (1 - current_ratio * (1 - drop_path_keep_prob))
      if use_summaries:
        with tf.device('/cpu:0'):
          tf.summary.scalar('drop_path_keep_prob', drop_path_keep_prob)
471
472
473
474
475
476
477
478
      net = drop_path(net, drop_path_keep_prob)
    return net


class NasNetANormalCell(NasNetABaseCell):
  """NASNetA Normal Cell."""

  def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells,
479
               total_training_steps, use_bounded_activation=False):
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    operations = ['separable_5x5_2',
                  'separable_3x3_2',
                  'separable_5x5_2',
                  'separable_3x3_2',
                  'avg_pool_3x3',
                  'none',
                  'avg_pool_3x3',
                  'avg_pool_3x3',
                  'separable_3x3_2',
                  'none']
    used_hiddenstates = [1, 0, 0, 0, 0, 0, 0]
    hiddenstate_indices = [0, 1, 1, 1, 0, 1, 1, 1, 0, 0]
    super(NasNetANormalCell, self).__init__(num_conv_filters, operations,
                                            used_hiddenstates,
                                            hiddenstate_indices,
                                            drop_path_keep_prob,
                                            total_num_cells,
497
498
                                            total_training_steps,
                                            use_bounded_activation)
499
500
501
502
503
504


class NasNetAReductionCell(NasNetABaseCell):
  """NASNetA Reduction Cell."""

  def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells,
505
               total_training_steps, use_bounded_activation=False):
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    operations = ['separable_5x5_2',
                  'separable_7x7_2',
                  'max_pool_3x3',
                  'separable_7x7_2',
                  'avg_pool_3x3',
                  'separable_5x5_2',
                  'none',
                  'avg_pool_3x3',
                  'separable_3x3_2',
                  'max_pool_3x3']
    used_hiddenstates = [1, 1, 1, 0, 0, 0, 0]
    hiddenstate_indices = [0, 1, 0, 1, 0, 1, 3, 2, 2, 0]
    super(NasNetAReductionCell, self).__init__(num_conv_filters, operations,
                                               used_hiddenstates,
                                               hiddenstate_indices,
                                               drop_path_keep_prob,
                                               total_num_cells,
523
524
                                               total_training_steps,
                                               use_bounded_activation)