inception_v4_test.py 12.7 KB
Newer Older
Alex Kurakin's avatar
Alex Kurakin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception_v4."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
21
from tensorflow.contrib import slim as contrib_slim
Alex Kurakin's avatar
Alex Kurakin committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

from nets import inception


class InceptionTest(tf.test.TestCase):

  def testBuildLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits'))
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(predictions.op.name.startswith(
        'InceptionV4/Logits/Predictions'))
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])

47
48
49
50
51
52
53
54
55
56
57
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = None
    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV4/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1536])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

Alex Kurakin's avatar
Alex Kurakin committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  def testBuildWithoutAuxLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, endpoints = inception.inception_v4(inputs, num_classes,
                                               create_aux_logits=False)
    self.assertFalse('AuxLogits' in endpoints)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])

  def testAllEndPointsShapes(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v4(inputs, num_classes)
    endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                        'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                        'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                        'Mixed_3a': [batch_size, 73, 73, 160],
                        'Mixed_4a': [batch_size, 71, 71, 192],
                        'Mixed_5a': [batch_size, 35, 35, 384],
                        # 4 x Inception-A blocks
                        'Mixed_5b': [batch_size, 35, 35, 384],
                        'Mixed_5c': [batch_size, 35, 35, 384],
                        'Mixed_5d': [batch_size, 35, 35, 384],
                        'Mixed_5e': [batch_size, 35, 35, 384],
                        # Reduction-A block
                        'Mixed_6a': [batch_size, 17, 17, 1024],
                        # 7 x Inception-B blocks
                        'Mixed_6b': [batch_size, 17, 17, 1024],
                        'Mixed_6c': [batch_size, 17, 17, 1024],
                        'Mixed_6d': [batch_size, 17, 17, 1024],
                        'Mixed_6e': [batch_size, 17, 17, 1024],
                        'Mixed_6f': [batch_size, 17, 17, 1024],
                        'Mixed_6g': [batch_size, 17, 17, 1024],
                        'Mixed_6h': [batch_size, 17, 17, 1024],
                        # Reduction-A block
                        'Mixed_7a': [batch_size, 8, 8, 1536],
                        # 3 x Inception-C blocks
                        'Mixed_7b': [batch_size, 8, 8, 1536],
                        'Mixed_7c': [batch_size, 8, 8, 1536],
                        'Mixed_7d': [batch_size, 8, 8, 1536],
                        # Logits and predictions
                        'AuxLogits': [batch_size, num_classes],
105
                        'global_pool': [batch_size, 1, 1, 1536],
Alex Kurakin's avatar
Alex Kurakin committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
                        'PreLogitsFlatten': [batch_size, 1536],
                        'Logits': [batch_size, num_classes],
                        'Predictions': [batch_size, num_classes]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299
    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v4_base(inputs)
    self.assertTrue(net.op.name.startswith(
        'InceptionV4/Mixed_7d'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 8, 8, 1536])
    expected_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
Mark Sandler's avatar
Mark Sandler committed
131
    for name, op in end_points.items():
Alex Kurakin's avatar
Alex Kurakin committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
      self.assertTrue(op.name.startswith('InceptionV4/' + name))

  def testBuildOnlyUpToFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    all_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    for index, endpoint in enumerate(all_endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v4_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV4/' + endpoint))
pkulzc's avatar
pkulzc committed
150
        self.assertItemsEqual(all_endpoints[:index+1], end_points.keys())
Alex Kurakin's avatar
Alex Kurakin committed
151
152
153
154
155
156
157
158
159
160
161

  def testVariablesSetDevice(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    # Force all Variables to reside on the device.
    with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
      inception.inception_v4(inputs, num_classes)
    with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
      inception.inception_v4(inputs, num_classes)
162
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
Alex Kurakin's avatar
Alex Kurakin committed
163
      self.assertDeviceEqual(v.device, '/cpu:0')
164
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
Alex Kurakin's avatar
Alex Kurakin committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
      self.assertDeviceEqual(v.device, '/gpu:0')

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 150, 150
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7d']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 3, 3, 1536])

180
  def testGlobalPool(self):
pkulzc's avatar
pkulzc committed
181
182
    batch_size = 1
    height, width = 350, 400
183
184
185
186
187
188
189
190
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7d']
    self.assertListEqual(pre_pool.get_shape().as_list(),
pkulzc's avatar
pkulzc committed
191
                         [batch_size, 9, 11, 1536])
192
193

  def testGlobalPoolUnknownImageShape(self):
pkulzc's avatar
pkulzc committed
194
195
    batch_size = 1
    height, width = 350, 400
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
      logits, end_points = inception.inception_v4(
          inputs, num_classes, create_aux_logits=False)
      self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7d']
      images = tf.random_uniform((batch_size, height, width, 3))
      sess.run(tf.global_variables_initializer())
      logits_out, pre_pool_out = sess.run([logits, pre_pool],
                                          {inputs: images.eval()})
      self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
pkulzc's avatar
pkulzc committed
210
      self.assertTupleEqual(pre_pool_out.shape, (batch_size, 9, 11, 1536))
211

Alex Kurakin's avatar
Alex Kurakin committed
212
213
214
215
216
217
218
219
220
221
222
  def testUnknownBatchSize(self):
    batch_size = 1
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (None, height, width, 3))
      logits, _ = inception.inception_v4(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [None, num_classes])
      images = tf.random_uniform((batch_size, height, width, 3))
223
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
224
225
226
227
228
229
230
231
232
233
234
235
236
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      eval_inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False)
      predictions = tf.argmax(logits, 1)
237
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_v4(train_inputs, num_classes)
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False,
                                         reuse=True)
      predictions = tf.argmax(logits, 1)
255
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
256
257
258
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

259
260
261
262
  def testNoBatchNormScaleByDefault(self):
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
263
    with contrib_slim.arg_scope(inception.inception_v4_arg_scope()):
264
265
266
267
268
269
270
271
      inception.inception_v4(inputs, num_classes, is_training=False)

    self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), [])

  def testBatchNormScale(self):
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
272
    with contrib_slim.arg_scope(
273
274
275
276
277
278
279
280
281
        inception.inception_v4_arg_scope(batch_norm_scale=True)):
      inception.inception_v4(inputs, num_classes, is_training=False)

    gamma_names = set(
        v.op.name for v in tf.global_variables('.*/BatchNorm/gamma:0$'))
    self.assertGreater(len(gamma_names), 0)
    for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'):
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

Alex Kurakin's avatar
Alex Kurakin committed
282
283
284

if __name__ == '__main__':
  tf.test.main()