inception_v4_test.py 12.7 KB
Newer Older
Alex Kurakin's avatar
Alex Kurakin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception_v4."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from nets import inception


class InceptionTest(tf.test.TestCase):

  def testBuildLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits'))
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(predictions.op.name.startswith(
        'InceptionV4/Logits/Predictions'))
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])

46
47
48
49
50
51
52
53
54
55
56
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = None
    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV4/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1536])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

Alex Kurakin's avatar
Alex Kurakin committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
  def testBuildWithoutAuxLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, endpoints = inception.inception_v4(inputs, num_classes,
                                               create_aux_logits=False)
    self.assertFalse('AuxLogits' in endpoints)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])

  def testAllEndPointsShapes(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v4(inputs, num_classes)
    endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                        'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                        'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                        'Mixed_3a': [batch_size, 73, 73, 160],
                        'Mixed_4a': [batch_size, 71, 71, 192],
                        'Mixed_5a': [batch_size, 35, 35, 384],
                        # 4 x Inception-A blocks
                        'Mixed_5b': [batch_size, 35, 35, 384],
                        'Mixed_5c': [batch_size, 35, 35, 384],
                        'Mixed_5d': [batch_size, 35, 35, 384],
                        'Mixed_5e': [batch_size, 35, 35, 384],
                        # Reduction-A block
                        'Mixed_6a': [batch_size, 17, 17, 1024],
                        # 7 x Inception-B blocks
                        'Mixed_6b': [batch_size, 17, 17, 1024],
                        'Mixed_6c': [batch_size, 17, 17, 1024],
                        'Mixed_6d': [batch_size, 17, 17, 1024],
                        'Mixed_6e': [batch_size, 17, 17, 1024],
                        'Mixed_6f': [batch_size, 17, 17, 1024],
                        'Mixed_6g': [batch_size, 17, 17, 1024],
                        'Mixed_6h': [batch_size, 17, 17, 1024],
                        # Reduction-A block
                        'Mixed_7a': [batch_size, 8, 8, 1536],
                        # 3 x Inception-C blocks
                        'Mixed_7b': [batch_size, 8, 8, 1536],
                        'Mixed_7c': [batch_size, 8, 8, 1536],
                        'Mixed_7d': [batch_size, 8, 8, 1536],
                        # Logits and predictions
                        'AuxLogits': [batch_size, num_classes],
104
                        'global_pool': [batch_size, 1, 1, 1536],
Alex Kurakin's avatar
Alex Kurakin committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
                        'PreLogitsFlatten': [batch_size, 1536],
                        'Logits': [batch_size, num_classes],
                        'Predictions': [batch_size, num_classes]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299
    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v4_base(inputs)
    self.assertTrue(net.op.name.startswith(
        'InceptionV4/Mixed_7d'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 8, 8, 1536])
    expected_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
Mark Sandler's avatar
Mark Sandler committed
130
    for name, op in end_points.items():
Alex Kurakin's avatar
Alex Kurakin committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      self.assertTrue(op.name.startswith('InceptionV4/' + name))

  def testBuildOnlyUpToFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    all_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    for index, endpoint in enumerate(all_endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v4_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV4/' + endpoint))
pkulzc's avatar
pkulzc committed
149
        self.assertItemsEqual(all_endpoints[:index+1], end_points.keys())
Alex Kurakin's avatar
Alex Kurakin committed
150
151
152
153
154
155
156
157
158
159
160

  def testVariablesSetDevice(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    # Force all Variables to reside on the device.
    with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
      inception.inception_v4(inputs, num_classes)
    with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
      inception.inception_v4(inputs, num_classes)
161
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
Alex Kurakin's avatar
Alex Kurakin committed
162
      self.assertDeviceEqual(v.device, '/cpu:0')
163
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
Alex Kurakin's avatar
Alex Kurakin committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
      self.assertDeviceEqual(v.device, '/gpu:0')

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 150, 150
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7d']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 3, 3, 1536])

179
  def testGlobalPool(self):
pkulzc's avatar
pkulzc committed
180
181
    batch_size = 1
    height, width = 350, 400
182
183
184
185
186
187
188
189
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7d']
    self.assertListEqual(pre_pool.get_shape().as_list(),
pkulzc's avatar
pkulzc committed
190
                         [batch_size, 9, 11, 1536])
191
192

  def testGlobalPoolUnknownImageShape(self):
pkulzc's avatar
pkulzc committed
193
194
    batch_size = 1
    height, width = 350, 400
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
      logits, end_points = inception.inception_v4(
          inputs, num_classes, create_aux_logits=False)
      self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7d']
      images = tf.random_uniform((batch_size, height, width, 3))
      sess.run(tf.global_variables_initializer())
      logits_out, pre_pool_out = sess.run([logits, pre_pool],
                                          {inputs: images.eval()})
      self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
pkulzc's avatar
pkulzc committed
209
      self.assertTupleEqual(pre_pool_out.shape, (batch_size, 9, 11, 1536))
210

Alex Kurakin's avatar
Alex Kurakin committed
211
212
213
214
215
216
217
218
219
220
221
  def testUnknownBatchSize(self):
    batch_size = 1
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (None, height, width, 3))
      logits, _ = inception.inception_v4(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [None, num_classes])
      images = tf.random_uniform((batch_size, height, width, 3))
222
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
223
224
225
226
227
228
229
230
231
232
233
234
235
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      eval_inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False)
      predictions = tf.argmax(logits, 1)
236
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_v4(train_inputs, num_classes)
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False,
                                         reuse=True)
      predictions = tf.argmax(logits, 1)
254
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
255
256
257
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  def testNoBatchNormScaleByDefault(self):
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
    with tf.contrib.slim.arg_scope(inception.inception_v4_arg_scope()):
      inception.inception_v4(inputs, num_classes, is_training=False)

    self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), [])

  def testBatchNormScale(self):
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
    with tf.contrib.slim.arg_scope(
        inception.inception_v4_arg_scope(batch_norm_scale=True)):
      inception.inception_v4(inputs, num_classes, is_training=False)

    gamma_names = set(
        v.op.name for v in tf.global_variables('.*/BatchNorm/gamma:0$'))
    self.assertGreater(len(gamma_names), 0)
    for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'):
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

Alex Kurakin's avatar
Alex Kurakin committed
281
282
283

if __name__ == '__main__':
  tf.test.main()