logger_test.py 4.58 KB
Newer Older
Scott Zhu's avatar
Scott Zhu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for benchmark logger."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import tempfile

Karmel Allison's avatar
Karmel Allison committed
26
import tensorflow as tf  # pylint: disable=g-bad-import-order
Scott Zhu's avatar
Scott Zhu committed
27

28
from official.utils.logging import logger
Scott Zhu's avatar
Scott Zhu committed
29
30
31
32
33


class BenchmarkLoggerTest(tf.test.TestCase):

  def tearDown(self):
Scott Zhu's avatar
Scott Zhu committed
34
    super(BenchmarkLoggerTest, self).tearDown()
Scott Zhu's avatar
Scott Zhu committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    tf.gfile.DeleteRecursively(self.get_temp_dir())

  def test_create_logging_dir(self):
    non_exist_temp_dir = os.path.join(self.get_temp_dir(), "unknown_dir")
    self.assertFalse(tf.gfile.IsDirectory(non_exist_temp_dir))

    logger.BenchmarkLogger(non_exist_temp_dir)
    self.assertTrue(tf.gfile.IsDirectory(non_exist_temp_dir))

  def test_log_metric(self):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    log = logger.BenchmarkLogger(log_dir)
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertTrue(tf.gfile.Exists(metric_log))
    with tf.gfile.GFile(metric_log) as f:
      metric = json.loads(f.readline())
      self.assertEqual(metric["name"], "accuracy")
      self.assertEqual(metric["value"], 0.999)
      self.assertEqual(metric["unit"], None)
      self.assertEqual(metric["global_step"], 1e4)
      self.assertEqual(metric["extras"], {"name": "value"})

  def test_log_multiple_metrics(self):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    log = logger.BenchmarkLogger(log_dir)
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})
    log.log_metric("loss", 0.02, global_step=1e4)

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertTrue(tf.gfile.Exists(metric_log))
    with tf.gfile.GFile(metric_log) as f:
      accuracy = json.loads(f.readline())
      self.assertEqual(accuracy["name"], "accuracy")
      self.assertEqual(accuracy["value"], 0.999)
      self.assertEqual(accuracy["unit"], None)
      self.assertEqual(accuracy["global_step"], 1e4)
      self.assertEqual(accuracy["extras"], {"name": "value"})

      loss = json.loads(f.readline())
      self.assertEqual(loss["name"], "loss")
      self.assertEqual(loss["value"], 0.02)
      self.assertEqual(loss["unit"], None)
      self.assertEqual(loss["global_step"], 1e4)

  def test_log_non_nubmer_value(self):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    log = logger.BenchmarkLogger(log_dir)
    const = tf.constant(1)
    log.log_metric("accuracy", const)

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertFalse(tf.gfile.Exists(metric_log))

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  def test_log_evaluation_result(self):
    eval_result = {'loss': 0.46237424,
                   'global_step': 207082,
                   'accuracy': 0.9285}
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    log = logger.BenchmarkLogger(log_dir)
    log.log_estimator_evaluation_result(eval_result)

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertTrue(tf.gfile.Exists(metric_log))
    with tf.gfile.GFile(metric_log) as f:
      loss = json.loads(f.readline())
      self.assertEqual(loss["name"], "loss")
      self.assertEqual(loss["value"], 0.46237424)
      self.assertEqual(loss["unit"], None)
      self.assertEqual(loss["global_step"], 207082)

      accuracy = json.loads(f.readline())
      self.assertEqual(accuracy["name"], "accuracy")
      self.assertEqual(accuracy["value"], 0.9285)
      self.assertEqual(accuracy["unit"], None)
      self.assertEqual(accuracy["global_step"], 207082)

  def test_log_evaluation_result_with_invalid_type(self):
    eval_result = "{'loss': 0.46237424, 'global_step': 207082}"
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    log = logger.BenchmarkLogger(log_dir)
    log.log_estimator_evaluation_result(eval_result)

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertFalse(tf.gfile.Exists(metric_log))

Scott Zhu's avatar
Scott Zhu committed
122
123
if __name__ == "__main__":
  tf.test.main()