evaluator.py 5.83 KB
Newer Older
Ivan Bogatyy's avatar
Ivan Bogatyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
r"""Runs a DRAGNN model on a given set of CoNLL-formatted sentences.

Sample invocation:
  bazel run -c opt <...>:dragnn_eval -- \
    --master_spec="/path/to/master-spec" \
    --checkpoint_file="/path/to/model/name.checkpoint" \
    --input_file="/path/to/input/documents/test.connlu"
"""

import os
import re
import time

import tensorflow as tf

from google.protobuf import text_format
from tensorflow.python.client import timeline
from tensorflow.python.platform import gfile

from dragnn.protos import spec_pb2
from dragnn.python import evaluation
from dragnn.python import graph_builder
from dragnn.python import sentence_io
from dragnn.python import spec_builder
from syntaxnet import sentence_pb2

import dragnn.python.load_dragnn_cc_impl
import syntaxnet.load_parser_ops

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string('master_spec', '',
                    'Path to text file containing a DRAGNN master spec to run.')
flags.DEFINE_string('resource_dir', '',
                    'Optional base directory for resources in the master spec.')
flags.DEFINE_bool('complete_master_spec', False, 'Whether the master_spec '
                  'needs the lexicon and other resources added to it.')
flags.DEFINE_string('checkpoint_file', '', 'Path to trained model checkpoint.')
flags.DEFINE_string('input_file', '',
                    'File of CoNLL-formatted sentences to read from.')
flags.DEFINE_string('output_file', '',
                    'File path to write annotated sentences to.')
flags.DEFINE_integer('max_batch_size', 2048, 'Maximum batch size to support.')
flags.DEFINE_string('inference_beam_size', '', 'Comma separated list of '
                    'component_name=beam_size pairs.')
flags.DEFINE_string('locally_normalize', '', 'Comma separated list of '
                    'component names to do local normalization on.')
flags.DEFINE_integer('threads', 10, 'Number of threads used for intra- and '
                     'inter-op parallelism.')
flags.DEFINE_string('timeline_output_file', '', 'Path to save timeline to. '
                    'If specified, the final iteration of the evaluation loop '
                    'will capture and save a TensorFlow timeline.')


def main(unused_argv):
57
  tf.logging.set_verbosity(tf.logging.INFO)
Ivan Bogatyy's avatar
Ivan Bogatyy committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

  # Parse the flags containint lists, using regular expressions.
  # This matches and extracts key=value pairs.
  component_beam_sizes = re.findall(r'([^=,]+)=(\d+)',
                                    FLAGS.inference_beam_size)
  # This matches strings separated by a comma. Does not return any empty
  # strings.
  components_to_locally_normalize = re.findall(r'[^,]+',
                                               FLAGS.locally_normalize)

  # Reads master spec.
  master_spec = spec_pb2.MasterSpec()
  with gfile.FastGFile(FLAGS.master_spec) as fin:
    text_format.Parse(fin.read(), master_spec)

  # Rewrite resource locations.
  if FLAGS.resource_dir:
    for component in master_spec.component:
      for resource in component.resource:
        for part in resource.part:
          part.file_pattern = os.path.join(FLAGS.resource_dir,
                                           part.file_pattern)

  if FLAGS.complete_master_spec:
    spec_builder.complete_master_spec(master_spec, None, FLAGS.resource_dir)

  # Graph building.
  tf.logging.info('Building the graph')
  g = tf.Graph()
  with g.as_default(), tf.device('/device:CPU:0'):
    hyperparam_config = spec_pb2.GridPoint()
    hyperparam_config.use_moving_average = True
    builder = graph_builder.MasterBuilder(master_spec, hyperparam_config)
    annotator = builder.add_annotation()
    builder.add_saver()

  tf.logging.info('Reading documents...')
  input_corpus = sentence_io.ConllSentenceReader(FLAGS.input_file).corpus()

  session_config = tf.ConfigProto(
      log_device_placement=False,
      intra_op_parallelism_threads=FLAGS.threads,
      inter_op_parallelism_threads=FLAGS.threads)

  with tf.Session(graph=g, config=session_config) as sess:
    tf.logging.info('Initializing variables...')
    sess.run(tf.global_variables_initializer())

    tf.logging.info('Loading from checkpoint...')
    sess.run('save/restore_all', {'save/Const:0': FLAGS.checkpoint_file})

    tf.logging.info('Processing sentences...')

    processed = []
    start_time = time.time()
    run_metadata = tf.RunMetadata()
    for start in range(0, len(input_corpus), FLAGS.max_batch_size):
      end = min(start + FLAGS.max_batch_size, len(input_corpus))
      feed_dict = {annotator['input_batch']: input_corpus[start:end]}
      for comp, beam_size in component_beam_sizes:
        feed_dict['%s/InferenceBeamSize:0' % comp] = beam_size
      for comp in components_to_locally_normalize:
        feed_dict['%s/LocallyNormalize:0' % comp] = True
      if FLAGS.timeline_output_file and end == len(input_corpus):
        serialized_annotations = sess.run(
            annotator['annotations'], feed_dict=feed_dict,
            options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
            run_metadata=run_metadata)
        trace = timeline.Timeline(step_stats=run_metadata.step_stats)
        with open(FLAGS.timeline_output_file, 'w') as trace_file:
          trace_file.write(trace.generate_chrome_trace_format())
      else:
        serialized_annotations = sess.run(
            annotator['annotations'], feed_dict=feed_dict)
      processed.extend(serialized_annotations)

    tf.logging.info('Processed %d documents in %.2f seconds.',
                    len(input_corpus), time.time() - start_time)
    pos, uas, las = evaluation.calculate_parse_metrics(input_corpus, processed)

    if FLAGS.output_file:
      with gfile.GFile(FLAGS.output_file, 'w') as f:
        for serialized_sentence in processed:
          sentence = sentence_pb2.Sentence()
          sentence.ParseFromString(serialized_sentence)
          f.write(text_format.MessageToString(sentence) + '\n\n')


if __name__ == '__main__':
  tf.app.run()