"git@developer.sourcefind.cn:change/sglang.git" did not exist on "8bd26dd4e6b12b7b5af8204483b3c659793c7b37"
Commit 24188199 authored by Ivan Bogatyy's avatar Ivan Bogatyy
Browse files

Update CoNLL evaluation table & evaluator.py

parent bb9e4418
......@@ -54,6 +54,7 @@ flags.DEFINE_string('timeline_output_file', '', 'Path to save timeline to. '
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
# Parse the flags containint lists, using regular expressions.
# This matches and extracts key=value pairs.
......@@ -133,7 +134,6 @@ def main(unused_argv):
tf.logging.info('Processed %d documents in %.2f seconds.',
len(input_corpus), time.time() - start_time)
pos, uas, las = evaluation.calculate_parse_metrics(input_corpus, processed)
print 'POS %.2f UAS %.2f LAS %.2f' % (pos, uas, las)
if FLAGS.output_file:
with gfile.GFile(FLAGS.output_file, 'w') as f:
......
......@@ -5,25 +5,90 @@ on Dependency Parsing](http://universaldependencies.org/conll17/). Note that we
are providing detailed tutorials to make it easier to use DRAGNN as a platform
for improving upon the baselines.
Please see our [paper](paper.pdf) more technical details about the model.
## Running the baselines
* Install SyntaxNet/DRAGNN following the install instructions in README.md
* Download the models here: [link]
* Install SyntaxNet/DRAGNN following the install instructions.
* Download the models [here](https://drive.google.com/file/d/0BxpbZGYVZsEeSFdrUnBNMUp1YzQ/view?usp=sharing)
* Download the contest [data data and
tools](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1976]).
* Run the baseline_eval.py to run the pre-trained tokenizer and evaluate on
the dev set.
You should obtain the following results on the dev sets:
NOTE: This will be filled in when the latest model results are available.
You should obtain the following results on the dev sets with gold
segmentation. Note: Our segmenter does not split multi-word tokens, which may
not play nice (yet) the official evaluation script.
Language | No. tokens | Tokenization F1 | UAS | LAS
-------- | :--------: | :-------------: | :-: | :-:
Chinese | XX | XX | XX | XX
| Language | UAS | LAS |
| -------- | :--------: | :-------------: |
| Ancient_Greek-PROIEL | 81.52 | 76.87 |
| Ancient_Greek | 70.96 | 65.13 |
| Arabic | 84.79 | 78.90 |
| Basque | 80.96 | 77.19 |
| Bulgarian | 91.33 | 86.77 |
| Catalan | 91.32 | 88.76 |
| Chinese | 77.56 | 71.96 |
| Croatian | 86.62 | 81.84 |
| Czech-CAC | 89.99 | 86.09 |
| Czech-CLTT | 78.25 | 73.70 |
| Czech | 89.55 | 85.23 |
| Danish | 84.69 | 81.36 |
| Dutch-LassySmall | 84.12 | 80.85 |
| Dutch | 86.68 | 81.91 |
| English-LinES | 82.43 | 78.46 |
| English-ParTUT | 83.55 | 79.00 |
| English | 87.60 | 84.20 |
| Estonian | 75.77 | 67.76 |
| Finnish-FTB | 87.54 | 83.70 |
| Finnish | 87.05 | 83.33 |
| French-ParTUT | 85.12 | 80.79 |
| French-Sequoia | 87.90 | 85.74 |
| French | 91.05 | 88.48 |
| Galician-TreeGal | 75.26 | 69.50 |
| Galician | 84.64 | 81.58 |
| German | 85.53 | 81.27 |
| Gothic | 81.79 | 74.99 |
| Greek | 86.99 | 84.23 |
| Hebrew | 87.79 | 82.18 |
| Hindi | 93.73 | 90.10 |
| Hungarian | 78.68 | 73.03 |
| Indonesian | 83.02 | 76.51 |
| Irish | 75.02 | 65.66 |
| Italian-ParTUT | 85.09 | 80.90 |
| Italian | 90.73 | 87.71 |
| Japanese | 95.33 | 93.99 |
| Kazakh | 28.09 | 7.87 |
| Korean | 81.21 | 76.78 |
| Latin-ITTB | 82.86 | 78.43 |
| Latin-PROIEL | 79.52 | 73.58 |
| Latin | 64.72 | 54.59 |
| Latvian | 76.17 | 70.55 |
| Norwegian-Bokmaal | 91.23 | 88.79 |
| Norwegian-Nynorsk | 89.32 | 86.67 |
| Old_Church_Slavonic | 84.96 | 79.65 |
| Persian | 87.70 | 83.98 |
| Polish | 91.32 | 86.83 |
| Portuguese-BR | 92.36 | 90.60 |
| Portuguese | 90.60 | 88.12 |
| Romanian | 89.41 | 83.00 |
| Russian-SynTagRus | 91.51 | 89.05 |
| Russian | 85.18 | 80.71 |
| Slovak | 88.08 | 82.64 |
| Slovenian-SST | 66.77 | 59.38 |
| Slovenian | 89.85 | 87.62 |
| Spanish-AnCora | 91.02 | 88.61 |
| Spanish | 90.32 | 87.16 |
| Swedish-LinES | 83.67 | 78.96 |
| Swedish | 82.45 | 78.75 |
| Turkish | 68.81 | 60.57 |
| Ukrainian | 72.19 | 62.79 |
| Urdu | 85.50 | 79.19 |
| Uyghur | 69.23 | 43.27 |
| Vietnamese | 65.18 | 55.61 |
## Using DRAGNN for developing your own models
We hope that DRAGNN will be useful as a starting point for deep learning parsing
methods. We've provided a few recipes for alternative baselines in the examples/
directory; look for more coming soon!
methods. We've provided a few recipes for alternative baselines sprinkled
through the tutorials and examples.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment