sentence_prediction.py 5.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sentence prediction (classification) task."""
import logging
import dataclasses
import tensorflow as tf
import tensorflow_hub as hub

from official.core import base_task
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import bert
from official.nlp.data import sentence_prediction_dataloader
from official.nlp.modeling import losses as loss_lib


@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `pretrain_checkpoint_dir` and `hub_module_url` can
  # be specified.
  pretrain_checkpoint_dir: str = ''
  hub_module_url: str = ''
  network: bert.BertPretrainerConfig = bert.BertPretrainerConfig(
      num_masked_tokens=0,
      cls_heads=[
          bert.ClsHeadConfig(
              inner_dim=768,
              num_classes=3,
              dropout_rate=0.1,
              name='sentence_prediction')
      ])
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


@base_task.register_task_cls(SentencePredictionConfig)
class SentencePredictionTask(base_task.Task):
  """Task object for sentence_prediction."""

  def __init__(self, params=cfg.TaskConfig):
    super(SentencePredictionTask, self).__init__(params)
    if params.hub_module_url and params.pretrain_checkpoint_dir:
      raise ValueError('At most one of `hub_module_url` and '
                       '`pretrain_checkpoint_dir` can be specified.')
    if params.hub_module_url:
      self._hub_module = hub.load(params.hub_module_url)
    else:
      self._hub_module = None

  def build_model(self):
    if self._hub_module:
      input_word_ids = tf.keras.layers.Input(
          shape=(None,), dtype=tf.int32, name='input_word_ids')
      input_mask = tf.keras.layers.Input(
          shape=(None,), dtype=tf.int32, name='input_mask')
      input_type_ids = tf.keras.layers.Input(
          shape=(None,), dtype=tf.int32, name='input_type_ids')
      bert_model = hub.KerasLayer(self._hub_module, trainable=True)
      pooled_output, sequence_output = bert_model(
          [input_word_ids, input_mask, input_type_ids])
      encoder_from_hub = tf.keras.Model(
          inputs=[input_word_ids, input_mask, input_type_ids],
          outputs=[sequence_output, pooled_output])
      return bert.instantiate_from_cfg(
          self.task_config.network, encoder_network=encoder_from_hub)
    else:
      return bert.instantiate_from_cfg(self.task_config.network)

  def build_losses(self, features, model_outputs, aux_losses=None) -> tf.Tensor:
    labels = features
    loss = loss_lib.weighted_sparse_categorical_crossentropy_loss(
        labels=labels,
        predictions=tf.nn.log_softmax(model_outputs['sentence_prediction'],
                                      axis=-1))

    if aux_losses:
      loss += tf.add_n(aux_losses)
    return loss

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
        y = tf.ones((1, 1), dtype=tf.int32)
        return (x, y)

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    return sentence_prediction_dataloader.SentencePredictionDataLoader(
        params).load(input_context)

  def build_metrics(self, training=None):
    del training
    metrics = [
        tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy')
    ]
    return metrics

  def process_metrics(self, metrics, labels, outputs):
    for metric in metrics:
      metric.update_state(labels, outputs['sentence_prediction'])

  def process_compiled_metrics(self, compiled_metrics, labels, outputs):
    compiled_metrics.update_state(labels, outputs['sentence_prediction'])

  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
    pretrain_ckpt_dir = self.task_config.pretrain_checkpoint_dir
    if not pretrain_ckpt_dir:
      return

    pretrain2finetune_mapping = {
        'encoder':
            model.checkpoint_items['encoder'],
        'next_sentence.pooler_dense':
            model.checkpoint_items['sentence_prediction.pooler_dense'],
    }
    ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
    latest_pretrain_ckpt = tf.train.latest_checkpoint(pretrain_ckpt_dir)
    if latest_pretrain_ckpt is None:
      raise FileNotFoundError(
          'Cannot find pretrain checkpoint under {}'.format(pretrain_ckpt_dir))
    status = ckpt.restore(latest_pretrain_ckpt)
    status.expect_partial().assert_existing_objects_matched()
    logging.info('finished loading pretrained checkpoint.')