# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sentence prediction (classification) task.""" import logging import dataclasses import tensorflow as tf import tensorflow_hub as hub from official.core import base_task from official.modeling.hyperparams import config_definitions as cfg from official.nlp.configs import bert from official.nlp.data import sentence_prediction_dataloader from official.nlp.modeling import losses as loss_lib @dataclasses.dataclass class SentencePredictionConfig(cfg.TaskConfig): """The model config.""" # At most one of `pretrain_checkpoint_dir` and `hub_module_url` can # be specified. pretrain_checkpoint_dir: str = '' hub_module_url: str = '' network: bert.BertPretrainerConfig = bert.BertPretrainerConfig( num_masked_tokens=0, cls_heads=[ bert.ClsHeadConfig( inner_dim=768, num_classes=3, dropout_rate=0.1, name='sentence_prediction') ]) train_data: cfg.DataConfig = cfg.DataConfig() validation_data: cfg.DataConfig = cfg.DataConfig() @base_task.register_task_cls(SentencePredictionConfig) class SentencePredictionTask(base_task.Task): """Task object for sentence_prediction.""" def __init__(self, params=cfg.TaskConfig): super(SentencePredictionTask, self).__init__(params) if params.hub_module_url and params.pretrain_checkpoint_dir: raise ValueError('At most one of `hub_module_url` and ' '`pretrain_checkpoint_dir` can be specified.') if params.hub_module_url: self._hub_module = hub.load(params.hub_module_url) else: self._hub_module = None def build_model(self): if self._hub_module: input_word_ids = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name='input_word_ids') input_mask = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name='input_mask') input_type_ids = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name='input_type_ids') bert_model = hub.KerasLayer(self._hub_module, trainable=True) pooled_output, sequence_output = bert_model( [input_word_ids, input_mask, input_type_ids]) encoder_from_hub = tf.keras.Model( inputs=[input_word_ids, input_mask, input_type_ids], outputs=[sequence_output, pooled_output]) return bert.instantiate_from_cfg( self.task_config.network, encoder_network=encoder_from_hub) else: return bert.instantiate_from_cfg(self.task_config.network) def build_losses(self, features, model_outputs, aux_losses=None) -> tf.Tensor: labels = features loss = loss_lib.weighted_sparse_categorical_crossentropy_loss( labels=labels, predictions=tf.nn.log_softmax(model_outputs['sentence_prediction'], axis=-1)) if aux_losses: loss += tf.add_n(aux_losses) return loss def build_inputs(self, params, input_context=None): """Returns tf.data.Dataset for sentence_prediction task.""" if params.input_path == 'dummy': def dummy_data(_): dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32) x = dict( input_word_ids=dummy_ids, input_mask=dummy_ids, input_type_ids=dummy_ids) y = tf.ones((1, 1), dtype=tf.int32) return (x, y) dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map( dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset return sentence_prediction_dataloader.SentencePredictionDataLoader( params).load(input_context) def build_metrics(self, training=None): del training metrics = [ tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy') ] return metrics def process_metrics(self, metrics, labels, outputs): for metric in metrics: metric.update_state(labels, outputs['sentence_prediction']) def process_compiled_metrics(self, compiled_metrics, labels, outputs): compiled_metrics.update_state(labels, outputs['sentence_prediction']) def initialize(self, model): """Load a pretrained checkpoint (if exists) and then train from iter 0.""" pretrain_ckpt_dir = self.task_config.pretrain_checkpoint_dir if not pretrain_ckpt_dir: return pretrain2finetune_mapping = { 'encoder': model.checkpoint_items['encoder'], 'next_sentence.pooler_dense': model.checkpoint_items['sentence_prediction.pooler_dense'], } ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping) latest_pretrain_ckpt = tf.train.latest_checkpoint(pretrain_ckpt_dir) if latest_pretrain_ckpt is None: raise FileNotFoundError( 'Cannot find pretrain checkpoint under {}'.format(pretrain_ckpt_dir)) status = ckpt.restore(latest_pretrain_ckpt) status.expect_partial().assert_existing_objects_matched() logging.info('finished loading pretrained checkpoint.')