bert.py 4.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A multi-head BERT encoder network for pretraining."""
from typing import List, Optional, Text

import dataclasses
import tensorflow as tf

from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
Hongkun Yu's avatar
Hongkun Yu committed
24
from official.modeling.hyperparams import config_definitions as cfg
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from official.nlp.configs import encoders
from official.nlp.modeling import layers
from official.nlp.modeling import networks
from official.nlp.modeling.models import bert_pretrainer


@dataclasses.dataclass
class ClsHeadConfig(base_config.Config):
  inner_dim: int = 0
  num_classes: int = 2
  activation: Optional[Text] = "tanh"
  dropout_rate: float = 0.0
  cls_token_idx: int = 0
  name: Optional[Text] = None


@dataclasses.dataclass
class BertPretrainerConfig(base_config.Config):
  """BERT encoder configuration."""
  num_masked_tokens: int = 76
  encoder: encoders.TransformerEncoderConfig = (
      encoders.TransformerEncoderConfig())
  cls_heads: List[ClsHeadConfig] = dataclasses.field(default_factory=list)


def instantiate_from_cfg(
    config: BertPretrainerConfig,
Chen Chen's avatar
Chen Chen committed
52
    encoder_network: Optional[tf.keras.Model] = None):
53
  """Instantiates a BertPretrainer from the config."""
Chen Chen's avatar
Chen Chen committed
54
  encoder_cfg = config.encoder
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  if encoder_network is None:
    encoder_network = networks.TransformerEncoder(
        vocab_size=encoder_cfg.vocab_size,
        hidden_size=encoder_cfg.hidden_size,
        num_layers=encoder_cfg.num_layers,
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
        activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
        max_sequence_length=encoder_cfg.max_position_embeddings,
        type_vocab_size=encoder_cfg.type_vocab_size,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range))
  if config.cls_heads:
    classification_heads = [
        layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads
    ]
  else:
    classification_heads = []
  return bert_pretrainer.BertPretrainerV2(
      config.num_masked_tokens,
      mlm_initializer=tf.keras.initializers.TruncatedNormal(
          stddev=encoder_cfg.initializer_range),
      encoder_network=encoder_network,
      classification_heads=classification_heads)
Hongkun Yu's avatar
Hongkun Yu committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


@dataclasses.dataclass
class BertPretrainDataConfig(cfg.DataConfig):
  """Data config for BERT pretraining task."""
  input_path: str = ""
  global_batch_size: int = 512
  is_training: bool = True
  seq_length: int = 512
  max_predictions_per_seq: int = 76
  use_next_sentence_label: bool = True
  use_position_id: bool = False


@dataclasses.dataclass
class BertPretrainEvalDataConfig(BertPretrainDataConfig):
  """Data config for the eval set in BERT pretraining task."""
  input_path: str = ""
  global_batch_size: int = 512
  is_training: bool = False
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119


@dataclasses.dataclass
class BertSentencePredictionDataConfig(cfg.DataConfig):
  """Data of sentence prediction dataset."""
  input_path: str = ""
  global_batch_size: int = 32
  is_training: bool = True
  seq_length: int = 128


@dataclasses.dataclass
class BertSentencePredictionDevDataConfig(cfg.DataConfig):
  """Dev data of MNLI sentence prediction dataset."""
  input_path: str = ""
  global_batch_size: int = 32
  is_training: bool = False
  seq_length: int = 128
  drop_remainder: bool = False