# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A multi-head BERT encoder network for pretraining.""" from typing import List, Optional, Text import dataclasses import tensorflow as tf from official.modeling import tf_utils from official.modeling.hyperparams import base_config from official.modeling.hyperparams import config_definitions as cfg from official.nlp.configs import encoders from official.nlp.modeling import layers from official.nlp.modeling import networks from official.nlp.modeling.models import bert_pretrainer @dataclasses.dataclass class ClsHeadConfig(base_config.Config): inner_dim: int = 0 num_classes: int = 2 activation: Optional[Text] = "tanh" dropout_rate: float = 0.0 cls_token_idx: int = 0 name: Optional[Text] = None @dataclasses.dataclass class BertPretrainerConfig(base_config.Config): """BERT encoder configuration.""" num_masked_tokens: int = 76 encoder: encoders.TransformerEncoderConfig = ( encoders.TransformerEncoderConfig()) cls_heads: List[ClsHeadConfig] = dataclasses.field(default_factory=list) def instantiate_from_cfg( config: BertPretrainerConfig, encoder_network: Optional[tf.keras.Model] = None): """Instantiates a BertPretrainer from the config.""" encoder_cfg = config.encoder if encoder_network is None: encoder_network = networks.TransformerEncoder( vocab_size=encoder_cfg.vocab_size, hidden_size=encoder_cfg.hidden_size, num_layers=encoder_cfg.num_layers, num_attention_heads=encoder_cfg.num_attention_heads, intermediate_size=encoder_cfg.intermediate_size, activation=tf_utils.get_activation(encoder_cfg.hidden_activation), dropout_rate=encoder_cfg.dropout_rate, attention_dropout_rate=encoder_cfg.attention_dropout_rate, max_sequence_length=encoder_cfg.max_position_embeddings, type_vocab_size=encoder_cfg.type_vocab_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=encoder_cfg.initializer_range)) if config.cls_heads: classification_heads = [ layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads ] else: classification_heads = [] return bert_pretrainer.BertPretrainerV2( config.num_masked_tokens, mlm_initializer=tf.keras.initializers.TruncatedNormal( stddev=encoder_cfg.initializer_range), encoder_network=encoder_network, classification_heads=classification_heads) @dataclasses.dataclass class BertPretrainDataConfig(cfg.DataConfig): """Data config for BERT pretraining task.""" input_path: str = "" global_batch_size: int = 512 is_training: bool = True seq_length: int = 512 max_predictions_per_seq: int = 76 use_next_sentence_label: bool = True use_position_id: bool = False @dataclasses.dataclass class BertPretrainEvalDataConfig(BertPretrainDataConfig): """Data config for the eval set in BERT pretraining task.""" input_path: str = "" global_batch_size: int = 512 is_training: bool = False @dataclasses.dataclass class BertSentencePredictionDataConfig(cfg.DataConfig): """Data of sentence prediction dataset.""" input_path: str = "" global_batch_size: int = 32 is_training: bool = True seq_length: int = 128 @dataclasses.dataclass class BertSentencePredictionDevDataConfig(cfg.DataConfig): """Dev data of MNLI sentence prediction dataset.""" input_path: str = "" global_batch_size: int = 32 is_training: bool = False seq_length: int = 128 drop_remainder: bool = False