mock_task.py 2.95 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Mock task for testing."""

import dataclasses
import numpy as np
import tensorflow as tf

from official.core import base_task
23
from official.core import config_definitions as cfg
Hongkun Yu's avatar
Hongkun Yu committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from official.core import exp_factory
from official.core import task_factory


class MockModel(tf.keras.Model):

  def __init__(self, network):
    super().__init__()
    self.network = network

  def call(self, inputs):
    outputs = self.network(inputs)
    self.add_loss(tf.reduce_mean(outputs))
    return outputs


@dataclasses.dataclass
class MockTaskConfig(cfg.TaskConfig):
  pass


@task_factory.register_task_cls(MockTaskConfig)
class MockTask(base_task.Task):
  """Mock task object for testing."""

Hongkun Yu's avatar
Hongkun Yu committed
49
50
  def __init__(self, params=None, logging_dir=None, name=None):
    super().__init__(params=params, logging_dir=logging_dir, name=name)
Hongkun Yu's avatar
Hongkun Yu committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

  def build_model(self, *arg, **kwargs):
    inputs = tf.keras.layers.Input(shape=(2,), name="random", dtype=tf.float32)
    outputs = tf.keras.layers.Dense(1)(inputs)
    network = tf.keras.Model(inputs=inputs, outputs=outputs)
    return MockModel(network)

  def build_metrics(self, training: bool = True):
    del training
    return [tf.keras.metrics.Accuracy(name="acc")]

  def build_inputs(self, params):

    def generate_data(_):
      x = tf.zeros(shape=(2,), dtype=tf.float32)
      label = tf.zeros([1], dtype=tf.int32)
      return x, label

    dataset = tf.data.Dataset.range(1)
    dataset = dataset.repeat()
    dataset = dataset.map(
        generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    return dataset.prefetch(buffer_size=1).batch(2, drop_remainder=True)

  def aggregate_logs(self, state, step_outputs):
    if state is None:
      state = {}
    for key, value in step_outputs.items():
      if key not in state:
        state[key] = []
      state[key].append(
          np.concatenate([np.expand_dims(v.numpy(), axis=0) for v in value]))
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    for k, v in aggregated_logs.items():
      aggregated_logs[k] = np.sum(np.stack(v, axis=0))
    return aggregated_logs


@exp_factory.register_config_factory("mock")
def mock_experiment() -> cfg.ExperimentConfig:
  config = cfg.ExperimentConfig(
      task=MockTaskConfig(), trainer=cfg.TrainerConfig())
  return config