run_pretrain.py 5.05 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import functools
23
import os
Hongkun Yu's avatar
Hongkun Yu committed
24
25
26
27
28
29
30
31
32
33
34
35

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: disable=unused-import
from official.nlp import xlnet_config
from official.nlp import xlnet_modeling as modeling
from official.nlp.xlnet import common_flags
from official.nlp.xlnet import data_utils
from official.nlp.xlnet import optimization
from official.nlp.xlnet import training_utils
Hongkun Yu's avatar
Hongkun Yu committed
36
from official.utils.misc import tpu_lib
Hongkun Yu's avatar
Hongkun Yu committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

flags.DEFINE_integer(
    "mask_alpha", default=6, help="How many tokens to form a group.")
flags.DEFINE_integer(
    "mask_beta", default=1, help="How many tokens to mask within each group.")
flags.DEFINE_integer(
    "num_predict",
    default=None,
    help="Number of tokens to predict in partial prediction.")
flags.DEFINE_integer("perm_size", 0, help="Window size of permutation.")

FLAGS = flags.FLAGS


def get_pretrainxlnet_model(model_config, run_config):
Hongkun Yu's avatar
Hongkun Yu committed
52
53
54
55
56
  return modeling.PretrainingXLNetModel(
      use_proj=True,
      xlnet_config=model_config,
      run_config=run_config,
      name="model")
Hongkun Yu's avatar
Hongkun Yu committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75


def main(unused_argv):
  del unused_argv
  num_hosts = 1
  if FLAGS.strategy_type == "mirror":
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == "tpu":
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
    topology = FLAGS.tpu_topology.split("x")
    total_num_core = 2 * int(topology[0]) * int(topology[1])
    num_hosts = total_num_core // FLAGS.num_core_per_host
  else:
    raise ValueError("The distribution strategy type is not supported: %s" %
                     FLAGS.strategy_type)
  if strategy:
    logging.info("***** Number of cores used : %d",
                 strategy.num_replicas_in_sync)
Hongkun Yu's avatar
Hongkun Yu committed
76
    logging.info("***** Number of hosts used : %d", num_hosts)
Hongkun Yu's avatar
Hongkun Yu committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  train_input_fn = functools.partial(
      data_utils.get_pretrain_input_data, FLAGS.train_batch_size, FLAGS.seq_len,
      strategy, FLAGS.train_tfrecord_path, FLAGS.reuse_len, FLAGS.perm_size,
      FLAGS.mask_alpha, FLAGS.mask_beta, FLAGS.num_predict, FLAGS.bi_data,
      FLAGS.uncased, num_hosts)

  total_training_steps = FLAGS.train_steps
  steps_per_epoch = int(FLAGS.train_data_size / FLAGS.train_batch_size)
  steps_per_loop = FLAGS.iterations

  optimizer, learning_rate_fn = optimization.create_optimizer(
      init_lr=FLAGS.learning_rate,
      num_train_steps=total_training_steps,
      num_warmup_steps=FLAGS.warmup_steps,
      min_lr_ratio=FLAGS.min_lr_ratio,
      adam_epsilon=FLAGS.adam_epsilon,
      weight_decay_rate=FLAGS.weight_decay_rate)

  model_config = xlnet_config.XLNetConfig(FLAGS)
  run_config = xlnet_config.create_run_config(True, False, FLAGS)
  input_meta_data = {}
  input_meta_data["d_model"] = FLAGS.d_model
  input_meta_data["mem_len"] = FLAGS.mem_len
  input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
                                               strategy.num_replicas_in_sync)
  input_meta_data["n_layer"] = FLAGS.n_layer
  input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
  model_fn = functools.partial(get_pretrainxlnet_model, model_config,
                               run_config)

107
  model = training_utils.train(
108
109
110
111
112
113
114
115
      strategy=strategy,
      model_fn=model_fn,
      input_meta_data=input_meta_data,
      eval_fn=None,
      metric_fn=None,
      train_input_fn=train_input_fn,
      test_input_fn=None,
      init_checkpoint=FLAGS.init_checkpoint,
116
      init_from_transformerxl=FLAGS.init_from_transformerxl,
117
118
119
120
121
122
123
      total_training_steps=total_training_steps,
      steps_per_epoch=steps_per_epoch,
      steps_per_loop=steps_per_loop,
      optimizer=optimizer,
      learning_rate_fn=learning_rate_fn,
      model_dir=FLAGS.model_dir,
      save_steps=FLAGS.save_steps)
Hongkun Yu's avatar
Hongkun Yu committed
124

125
126
127
128
129
130
131
  # Export transformer-xl model checkpoint to be used in finetuning.
  checkpoint = tf.train.Checkpoint(transformer_xl=model.transformerxl_model)
  saved_path = checkpoint.save(
      os.path.join(FLAGS.model_dir, "pretrained/transformer_xl.ckpt"))
  logging.info("Exporting the transformer-xl model as a new TF checkpoint: %s",
               saved_path)

Hongkun Yu's avatar
Hongkun Yu committed
132
133
134
135

if __name__ == "__main__":
  assert tf.version.VERSION.startswith('2.')
  app.run(main)