encoders.py 18.1 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
16
"""Transformer Encoders.

Hongkun Yu's avatar
Hongkun Yu committed
17
Includes configurations and factory methods.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
"""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
from typing import Optional
Hongkun Yu's avatar
Hongkun Yu committed
20

21
import dataclasses
Hongkun Yu's avatar
Hongkun Yu committed
22
import gin
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
import tensorflow as tf
24

Hongkun Yu's avatar
Hongkun Yu committed
25
from official.modeling import hyperparams
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.modeling import tf_utils
Frederick Liu's avatar
Frederick Liu committed
27
from official.nlp.modeling import layers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.nlp.modeling import networks
Hongkun Yu's avatar
Hongkun Yu committed
29
from official.nlp.projects.bigbird import encoder as bigbird_encoder
30
31
32


@dataclasses.dataclass
Hongkun Yu's avatar
Hongkun Yu committed
33
class BertEncoderConfig(hyperparams.Config):
34
35
36
37
38
39
  """BERT encoder configuration."""
  vocab_size: int = 30522
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
Chen Chen's avatar
Chen Chen committed
40
  intermediate_size: int = 3072
41
42
43
44
45
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
  embedding_size: Optional[int] = None
Frederick Liu's avatar
Frederick Liu committed
47
  output_range: Optional[int] = None
Chen Chen's avatar
Chen Chen committed
48
  return_all_encoder_outputs: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
49
50


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
51
52
53
54
55
56
57
58
59
60
61
62
@dataclasses.dataclass
class MobileBertEncoderConfig(hyperparams.Config):
  """MobileBERT encoder configuration.

  Attributes:
    word_vocab_size: number of words in the vocabulary.
    word_embed_size: word embedding size.
    type_vocab_size: number of word types.
    max_sequence_length: maximum length of input sequence.
    num_blocks: number of transformer block in the encoder model.
    hidden_size: the hidden size for the transformer block.
    num_attention_heads: number of attention heads in the transformer block.
Hongkun Yu's avatar
Hongkun Yu committed
63
64
    intermediate_size: the size of the "intermediate" (a.k.a., feed forward)
      layer.
Chen Chen's avatar
Chen Chen committed
65
    hidden_activation: the non-linear activation function to apply to the
Hongkun Yu's avatar
Hongkun Yu committed
66
      output of the intermediate/feed-forward layer.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
68
69
70
71
    hidden_dropout_prob: dropout probability for the hidden layers.
    attention_probs_dropout_prob: dropout probability of the attention
      probabilities.
    intra_bottleneck_size: the size of bottleneck.
    initializer_range: The stddev of the truncated_normal_initializer for
Hongkun Yu's avatar
Hongkun Yu committed
72
      initializing all weight matrices.
Chen Chen's avatar
Chen Chen committed
73
74
75
    use_bottleneck_attention: Use attention inputs from the bottleneck
      transformation. If true, the following `key_query_shared_bottleneck`
      will be ignored.
Hongkun Yu's avatar
Hongkun Yu committed
76
77
    key_query_shared_bottleneck: whether to share linear transformation for keys
      and queries.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    num_feedforward_networks: number of stacked feed-forward networks.
    normalization_type: the type of normalization_type, only 'no_norm' and
      'layer_norm' are supported. 'no_norm' represents the element-wise linear
      transformation for the student model, as suggested by the original
      MobileBERT paper. 'layer_norm' is used for the teacher model.
    classifier_activation: if using the tanh activation for the final
      representation of the [CLS] token in fine-tuning.
  """
  word_vocab_size: int = 30522
  word_embed_size: int = 128
  type_vocab_size: int = 2
  max_sequence_length: int = 512
  num_blocks: int = 24
  hidden_size: int = 512
  num_attention_heads: int = 4
  intermediate_size: int = 4096
Chen Chen's avatar
Chen Chen committed
94
  hidden_activation: str = "gelu"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
96
97
98
  hidden_dropout_prob: float = 0.1
  attention_probs_dropout_prob: float = 0.1
  intra_bottleneck_size: int = 1024
  initializer_range: float = 0.02
Chen Chen's avatar
Chen Chen committed
99
  use_bottleneck_attention: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
100
101
102
103
  key_query_shared_bottleneck: bool = False
  num_feedforward_networks: int = 1
  normalization_type: str = "layer_norm"
  classifier_activation: bool = True
Chen Chen's avatar
Chen Chen committed
104
  input_mask_dtype: str = "int32"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
106


Chen Chen's avatar
Chen Chen committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@dataclasses.dataclass
class AlbertEncoderConfig(hyperparams.Config):
  """ALBERT encoder configuration."""
  vocab_size: int = 30000
  embedding_width: int = 128
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
  intermediate_size: int = 3072
  dropout_rate: float = 0.0
  attention_dropout_rate: float = 0.0
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02


Hongkun Yu's avatar
Hongkun Yu committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
@dataclasses.dataclass
class BigBirdEncoderConfig(hyperparams.Config):
  """BigBird encoder configuration."""
  vocab_size: int = 50358
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
  intermediate_size: int = 3072
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 4096
  num_rand_blocks: int = 3
  block_size: int = 64
  type_vocab_size: int = 16
  initializer_range: float = 0.02
140
  embedding_width: Optional[int] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
  use_gradient_checkpointing: bool = False
Hongkun Yu's avatar
Hongkun Yu committed
142
143


Frederick Liu's avatar
Frederick Liu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
@dataclasses.dataclass
class KernelEncoderConfig(hyperparams.Config):
  """Linear encoder configuration."""
  vocab_size: int = 30522
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
  intermediate_size: int = 3072
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
  embedding_size: Optional[int] = None
  feature_transform: str = "exp"
  num_random_features: int = 256
  redraw: bool = False
  is_short_seq: bool = False
  begin_kernel: int = 0


Allen Wang's avatar
Allen Wang committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@dataclasses.dataclass
class XLNetEncoderConfig(hyperparams.Config):
  """XLNet encoder configuration."""
  vocab_size: int = 32000
  num_layers: int = 24
  hidden_size: int = 1024
  num_attention_heads: int = 16
  head_size: int = 64
  inner_size: int = 4096
  inner_activation: str = "gelu"
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  attention_type: str = "bi"
  bi_data: bool = False
  tie_attention_biases: bool = False
  memory_length: int = 0
  same_length: bool = False
  clamp_length: int = -1
  reuse_length: int = 0
  use_cls_mask: bool = False
  embedding_width: int = 1024
  initializer_range: float = 0.02
  two_stream: bool = False


Hongkun Yu's avatar
Hongkun Yu committed
191
192
193
194
@dataclasses.dataclass
class EncoderConfig(hyperparams.OneOfConfig):
  """Encoder configuration."""
  type: Optional[str] = "bert"
Chen Chen's avatar
Chen Chen committed
195
  albert: AlbertEncoderConfig = AlbertEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
196
  bert: BertEncoderConfig = BertEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
197
  bigbird: BigBirdEncoderConfig = BigBirdEncoderConfig()
Frederick Liu's avatar
Frederick Liu committed
198
  kernel: KernelEncoderConfig = KernelEncoderConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
199
  mobilebert: MobileBertEncoderConfig = MobileBertEncoderConfig()
Allen Wang's avatar
Allen Wang committed
200
  xlnet: XLNetEncoderConfig = XLNetEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
201
202
203


@gin.configurable
Hongkun Yu's avatar
Hongkun Yu committed
204
205
206
207
def build_encoder(config: EncoderConfig,
                  embedding_layer: Optional[tf.keras.layers.Layer] = None,
                  encoder_cls=None,
                  bypass_config: bool = False):
Hongkun Yu's avatar
Hongkun Yu committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
  """Instantiate a Transformer encoder network from EncoderConfig.

  Args:
    config: the one-of encoder config, which provides encoder parameters of a
      chosen encoder.
    embedding_layer: an external embedding layer passed to the encoder.
    encoder_cls: an external encoder cls not included in the supported encoders,
      usually used by gin.configurable.
    bypass_config: whether to ignore config instance to create the object with
      `encoder_cls`.

  Returns:
    An encoder instance.
  """
  if bypass_config:
    return encoder_cls()
Frederick Liu's avatar
Frederick Liu committed
224
225
226
  encoder_type = config.type
  encoder_cfg = config.get()
  if encoder_cls and encoder_cls.__name__ == "EncoderScaffold":
Hongkun Yu's avatar
Hongkun Yu committed
227
    embedding_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
228
229
230
231
        vocab_size=encoder_cfg.vocab_size,
        type_vocab_size=encoder_cfg.type_vocab_size,
        hidden_size=encoder_cfg.hidden_size,
        max_seq_length=encoder_cfg.max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
232
        initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
233
234
            stddev=encoder_cfg.initializer_range),
        dropout_rate=encoder_cfg.dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
235
236
    )
    hidden_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
237
238
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
Hongkun Yu's avatar
Hongkun Yu committed
239
        intermediate_activation=tf_utils.get_activation(
Hongkun Yu's avatar
Hongkun Yu committed
240
241
242
            encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
243
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
244
            stddev=encoder_cfg.initializer_range),
Hongkun Yu's avatar
Hongkun Yu committed
245
246
247
248
    )
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cfg=hidden_cfg,
Hongkun Yu's avatar
Hongkun Yu committed
249
250
        num_hidden_instances=encoder_cfg.num_layers,
        pooled_output_dim=encoder_cfg.hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
251
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
Chen Chen's avatar
Chen Chen committed
252
            stddev=encoder_cfg.initializer_range),
253
254
        return_all_layer_outputs=encoder_cfg.return_all_encoder_outputs,
        dict_outputs=True)
Hongkun Yu's avatar
Hongkun Yu committed
255
256
    return encoder_cls(**kwargs)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
257
  if encoder_type == "mobilebert":
Frederick Liu's avatar
Frederick Liu committed
258
    return networks.MobileBERTEncoder(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
259
260
261
262
263
264
265
266
        word_vocab_size=encoder_cfg.word_vocab_size,
        word_embed_size=encoder_cfg.word_embed_size,
        type_vocab_size=encoder_cfg.type_vocab_size,
        max_sequence_length=encoder_cfg.max_sequence_length,
        num_blocks=encoder_cfg.num_blocks,
        hidden_size=encoder_cfg.hidden_size,
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
Chen Chen's avatar
Chen Chen committed
267
        intermediate_act_fn=encoder_cfg.hidden_activation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
268
269
270
        hidden_dropout_prob=encoder_cfg.hidden_dropout_prob,
        attention_probs_dropout_prob=encoder_cfg.attention_probs_dropout_prob,
        intra_bottleneck_size=encoder_cfg.intra_bottleneck_size,
Chen Chen's avatar
Chen Chen committed
271
        initializer_range=encoder_cfg.initializer_range,
Chen Chen's avatar
Chen Chen committed
272
        use_bottleneck_attention=encoder_cfg.use_bottleneck_attention,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
273
274
275
        key_query_shared_bottleneck=encoder_cfg.key_query_shared_bottleneck,
        num_feedforward_networks=encoder_cfg.num_feedforward_networks,
        normalization_type=encoder_cfg.normalization_type,
Chen Chen's avatar
Chen Chen committed
276
277
        classifier_activation=encoder_cfg.classifier_activation,
        input_mask_dtype=encoder_cfg.input_mask_dtype)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
278

Chen Chen's avatar
Chen Chen committed
279
  if encoder_type == "albert":
Frederick Liu's avatar
Frederick Liu committed
280
    return networks.AlbertEncoder(
Chen Chen's avatar
Chen Chen committed
281
282
283
284
285
286
287
288
289
290
291
292
        vocab_size=encoder_cfg.vocab_size,
        embedding_width=encoder_cfg.embedding_width,
        hidden_size=encoder_cfg.hidden_size,
        num_layers=encoder_cfg.num_layers,
        num_attention_heads=encoder_cfg.num_attention_heads,
        max_sequence_length=encoder_cfg.max_position_embeddings,
        type_vocab_size=encoder_cfg.type_vocab_size,
        intermediate_size=encoder_cfg.intermediate_size,
        activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
        initializer=tf.keras.initializers.TruncatedNormal(
293
294
            stddev=encoder_cfg.initializer_range),
        dict_outputs=True)
Chen Chen's avatar
Chen Chen committed
295

Hongkun Yu's avatar
Hongkun Yu committed
296
  if encoder_type == "bigbird":
Hongkun Yu's avatar
Hongkun Yu committed
297
298
    # TODO(frederickliu): Support use_gradient_checkpointing and update
    # experiments to use the EncoderScaffold only.
Frederick Liu's avatar
Frederick Liu committed
299
    if encoder_cfg.use_gradient_checkpointing:
Hongkun Yu's avatar
Hongkun Yu committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
      return bigbird_encoder.BigBirdEncoder(
          vocab_size=encoder_cfg.vocab_size,
          hidden_size=encoder_cfg.hidden_size,
          num_layers=encoder_cfg.num_layers,
          num_attention_heads=encoder_cfg.num_attention_heads,
          intermediate_size=encoder_cfg.intermediate_size,
          activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
          dropout_rate=encoder_cfg.dropout_rate,
          attention_dropout_rate=encoder_cfg.attention_dropout_rate,
          num_rand_blocks=encoder_cfg.num_rand_blocks,
          block_size=encoder_cfg.block_size,
          max_position_embeddings=encoder_cfg.max_position_embeddings,
          type_vocab_size=encoder_cfg.type_vocab_size,
          initializer=tf.keras.initializers.TruncatedNormal(
              stddev=encoder_cfg.initializer_range),
          embedding_width=encoder_cfg.embedding_width,
          use_gradient_checkpointing=encoder_cfg.use_gradient_checkpointing)
Frederick Liu's avatar
Frederick Liu committed
317
    embedding_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
318
        vocab_size=encoder_cfg.vocab_size,
Frederick Liu's avatar
Frederick Liu committed
319
        type_vocab_size=encoder_cfg.type_vocab_size,
Hongkun Yu's avatar
Hongkun Yu committed
320
        hidden_size=encoder_cfg.hidden_size,
Frederick Liu's avatar
Frederick Liu committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        max_seq_length=encoder_cfg.max_position_embeddings,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        dropout_rate=encoder_cfg.dropout_rate)
    attention_cfg = dict(
        num_heads=encoder_cfg.num_attention_heads,
        key_dim=int(encoder_cfg.hidden_size // encoder_cfg.num_attention_heads),
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        max_rand_mask_length=encoder_cfg.max_position_embeddings,
        num_rand_blocks=encoder_cfg.num_rand_blocks,
        from_block_size=encoder_cfg.block_size,
        to_block_size=encoder_cfg.block_size,
        )
    hidden_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
336
337
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
Frederick Liu's avatar
Frederick Liu committed
338
339
        intermediate_activation=tf_utils.get_activation(
            encoder_cfg.hidden_activation),
Hongkun Yu's avatar
Hongkun Yu committed
340
341
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
Frederick Liu's avatar
Frederick Liu committed
342
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
343
            stddev=encoder_cfg.initializer_range),
344
        attention_cls=layers.BigBirdAttention,
Frederick Liu's avatar
Frederick Liu committed
345
346
347
348
349
350
        attention_cfg=attention_cfg)
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cls=layers.TransformerScaffold,
        hidden_cfg=hidden_cfg,
        num_hidden_instances=encoder_cfg.num_layers,
351
        mask_cls=layers.BigBirdMasks,
Frederick Liu's avatar
Frederick Liu committed
352
353
354
355
356
357
358
359
        mask_cfg=dict(block_size=encoder_cfg.block_size),
        pooled_output_dim=encoder_cfg.hidden_size,
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        return_all_layer_outputs=False,
        dict_outputs=True,
        layer_idx_as_attention_seed=True)
    return networks.EncoderScaffold(**kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
360

Frederick Liu's avatar
Frederick Liu committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  if encoder_type == "kernel":
    embedding_cfg = dict(
        vocab_size=encoder_cfg.vocab_size,
        type_vocab_size=encoder_cfg.type_vocab_size,
        hidden_size=encoder_cfg.hidden_size,
        max_seq_length=encoder_cfg.max_position_embeddings,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        dropout_rate=encoder_cfg.dropout_rate)
    attention_cfg = dict(
        num_heads=encoder_cfg.num_attention_heads,
        key_dim=int(encoder_cfg.hidden_size // encoder_cfg.num_attention_heads),
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        feature_transform=encoder_cfg.feature_transform,
        num_random_features=encoder_cfg.num_random_features,
        redraw=encoder_cfg.redraw,
        is_short_seq=encoder_cfg.is_short_seq,
        begin_kernel=encoder_cfg.begin_kernel,
        )
    hidden_cfg = dict(
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
        intermediate_activation=tf_utils.get_activation(
            encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        attention_cls=layers.KernelAttention,
        attention_cfg=attention_cfg)
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cls=layers.TransformerScaffold,
        hidden_cfg=hidden_cfg,
        num_hidden_instances=encoder_cfg.num_layers,
        mask_cls=layers.KernelMask,
        pooled_output_dim=encoder_cfg.hidden_size,
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        return_all_layer_outputs=False,
        dict_outputs=True,
        layer_idx_as_attention_seed=True)
    return networks.EncoderScaffold(**kwargs)

Allen Wang's avatar
Allen Wang committed
406
  if encoder_type == "xlnet":
Frederick Liu's avatar
Frederick Liu committed
407
    return networks.XLNetBase(
Allen Wang's avatar
Allen Wang committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        vocab_size=encoder_cfg.vocab_size,
        num_layers=encoder_cfg.num_layers,
        hidden_size=encoder_cfg.hidden_size,
        num_attention_heads=encoder_cfg.num_attention_heads,
        head_size=encoder_cfg.head_size,
        inner_size=encoder_cfg.inner_size,
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
        attention_type=encoder_cfg.attention_type,
        bi_data=encoder_cfg.bi_data,
        two_stream=encoder_cfg.two_stream,
        tie_attention_biases=encoder_cfg.tie_attention_biases,
        memory_length=encoder_cfg.memory_length,
        clamp_length=encoder_cfg.clamp_length,
        reuse_length=encoder_cfg.reuse_length,
        inner_activation=encoder_cfg.inner_activation,
        use_cls_mask=encoder_cfg.use_cls_mask,
        embedding_width=encoder_cfg.embedding_width,
        initializer=tf.keras.initializers.RandomNormal(
            stddev=encoder_cfg.initializer_range))

Hongkun Yu's avatar
Hongkun Yu committed
429
430
  # Uses the default BERTEncoder configuration schema to create the encoder.
  # If it does not match, please add a switch branch by the encoder type.
Frederick Liu's avatar
Frederick Liu committed
431
  return networks.BertEncoder(
Hongkun Yu's avatar
Hongkun Yu committed
432
433
434
435
436
437
438
439
440
441
      vocab_size=encoder_cfg.vocab_size,
      hidden_size=encoder_cfg.hidden_size,
      num_layers=encoder_cfg.num_layers,
      num_attention_heads=encoder_cfg.num_attention_heads,
      intermediate_size=encoder_cfg.intermediate_size,
      activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
      dropout_rate=encoder_cfg.dropout_rate,
      attention_dropout_rate=encoder_cfg.attention_dropout_rate,
      max_sequence_length=encoder_cfg.max_position_embeddings,
      type_vocab_size=encoder_cfg.type_vocab_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
442
      initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
443
          stddev=encoder_cfg.initializer_range),
Frederick Liu's avatar
Frederick Liu committed
444
      output_range=encoder_cfg.output_range,
Hongkun Yu's avatar
Hongkun Yu committed
445
      embedding_width=encoder_cfg.embedding_size,
Chen Chen's avatar
Chen Chen committed
446
      embedding_layer=embedding_layer,
447
448
      return_all_encoder_outputs=encoder_cfg.return_all_encoder_outputs,
      dict_outputs=True)