encoders.py 14.4 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
16
"""Transformer Encoders.

Hongkun Yu's avatar
Hongkun Yu committed
17
Includes configurations and factory methods.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
"""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
from typing import Optional
Hongkun Yu's avatar
Hongkun Yu committed
20

21
import dataclasses
Hongkun Yu's avatar
Hongkun Yu committed
22
import gin
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
import tensorflow as tf
24

Hongkun Yu's avatar
Hongkun Yu committed
25
from official.modeling import hyperparams
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.modeling import tf_utils
Frederick Liu's avatar
Frederick Liu committed
27
from official.nlp.modeling import layers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.nlp.modeling import networks
29
30
31


@dataclasses.dataclass
Hongkun Yu's avatar
Hongkun Yu committed
32
class BertEncoderConfig(hyperparams.Config):
33
34
35
36
37
38
  """BERT encoder configuration."""
  vocab_size: int = 30522
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
Chen Chen's avatar
Chen Chen committed
39
  intermediate_size: int = 3072
40
41
42
43
44
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
  embedding_size: Optional[int] = None
Frederick Liu's avatar
Frederick Liu committed
46
  output_range: Optional[int] = None
Chen Chen's avatar
Chen Chen committed
47
  return_all_encoder_outputs: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
49


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
50
51
52
53
54
55
56
57
58
59
60
61
@dataclasses.dataclass
class MobileBertEncoderConfig(hyperparams.Config):
  """MobileBERT encoder configuration.

  Attributes:
    word_vocab_size: number of words in the vocabulary.
    word_embed_size: word embedding size.
    type_vocab_size: number of word types.
    max_sequence_length: maximum length of input sequence.
    num_blocks: number of transformer block in the encoder model.
    hidden_size: the hidden size for the transformer block.
    num_attention_heads: number of attention heads in the transformer block.
Hongkun Yu's avatar
Hongkun Yu committed
62
63
    intermediate_size: the size of the "intermediate" (a.k.a., feed forward)
      layer.
Chen Chen's avatar
Chen Chen committed
64
    hidden_activation: the non-linear activation function to apply to the
Hongkun Yu's avatar
Hongkun Yu committed
65
      output of the intermediate/feed-forward layer.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
68
69
70
    hidden_dropout_prob: dropout probability for the hidden layers.
    attention_probs_dropout_prob: dropout probability of the attention
      probabilities.
    intra_bottleneck_size: the size of bottleneck.
    initializer_range: The stddev of the truncated_normal_initializer for
Hongkun Yu's avatar
Hongkun Yu committed
71
      initializing all weight matrices.
Chen Chen's avatar
Chen Chen committed
72
73
74
    use_bottleneck_attention: Use attention inputs from the bottleneck
      transformation. If true, the following `key_query_shared_bottleneck`
      will be ignored.
Hongkun Yu's avatar
Hongkun Yu committed
75
76
    key_query_shared_bottleneck: whether to share linear transformation for keys
      and queries.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    num_feedforward_networks: number of stacked feed-forward networks.
    normalization_type: the type of normalization_type, only 'no_norm' and
      'layer_norm' are supported. 'no_norm' represents the element-wise linear
      transformation for the student model, as suggested by the original
      MobileBERT paper. 'layer_norm' is used for the teacher model.
    classifier_activation: if using the tanh activation for the final
      representation of the [CLS] token in fine-tuning.
  """
  word_vocab_size: int = 30522
  word_embed_size: int = 128
  type_vocab_size: int = 2
  max_sequence_length: int = 512
  num_blocks: int = 24
  hidden_size: int = 512
  num_attention_heads: int = 4
  intermediate_size: int = 4096
Chen Chen's avatar
Chen Chen committed
93
  hidden_activation: str = "gelu"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
96
97
  hidden_dropout_prob: float = 0.1
  attention_probs_dropout_prob: float = 0.1
  intra_bottleneck_size: int = 1024
  initializer_range: float = 0.02
Chen Chen's avatar
Chen Chen committed
98
  use_bottleneck_attention: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
101
102
  key_query_shared_bottleneck: bool = False
  num_feedforward_networks: int = 1
  normalization_type: str = "layer_norm"
  classifier_activation: bool = True
Chen Chen's avatar
Chen Chen committed
103
  input_mask_dtype: str = "int32"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
105


Chen Chen's avatar
Chen Chen committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
@dataclasses.dataclass
class AlbertEncoderConfig(hyperparams.Config):
  """ALBERT encoder configuration."""
  vocab_size: int = 30000
  embedding_width: int = 128
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
  intermediate_size: int = 3072
  dropout_rate: float = 0.0
  attention_dropout_rate: float = 0.0
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02


Hongkun Yu's avatar
Hongkun Yu committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
@dataclasses.dataclass
class BigBirdEncoderConfig(hyperparams.Config):
  """BigBird encoder configuration."""
  vocab_size: int = 50358
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
  intermediate_size: int = 3072
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 4096
  num_rand_blocks: int = 3
  block_size: int = 64
  type_vocab_size: int = 16
  initializer_range: float = 0.02
139
  embedding_width: Optional[int] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
  use_gradient_checkpointing: bool = False
Hongkun Yu's avatar
Hongkun Yu committed
141
142


Allen Wang's avatar
Allen Wang committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
@dataclasses.dataclass
class XLNetEncoderConfig(hyperparams.Config):
  """XLNet encoder configuration."""
  vocab_size: int = 32000
  num_layers: int = 24
  hidden_size: int = 1024
  num_attention_heads: int = 16
  head_size: int = 64
  inner_size: int = 4096
  inner_activation: str = "gelu"
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  attention_type: str = "bi"
  bi_data: bool = False
  tie_attention_biases: bool = False
  memory_length: int = 0
  same_length: bool = False
  clamp_length: int = -1
  reuse_length: int = 0
  use_cls_mask: bool = False
  embedding_width: int = 1024
  initializer_range: float = 0.02
  two_stream: bool = False


Hongkun Yu's avatar
Hongkun Yu committed
168
169
170
171
@dataclasses.dataclass
class EncoderConfig(hyperparams.OneOfConfig):
  """Encoder configuration."""
  type: Optional[str] = "bert"
Chen Chen's avatar
Chen Chen committed
172
  albert: AlbertEncoderConfig = AlbertEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
173
  bert: BertEncoderConfig = BertEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
174
  bigbird: BigBirdEncoderConfig = BigBirdEncoderConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
175
  mobilebert: MobileBertEncoderConfig = MobileBertEncoderConfig()
Allen Wang's avatar
Allen Wang committed
176
  xlnet: XLNetEncoderConfig = XLNetEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
177
178
179


@gin.configurable
Hongkun Yu's avatar
Hongkun Yu committed
180
181
182
183
def build_encoder(config: EncoderConfig,
                  embedding_layer: Optional[tf.keras.layers.Layer] = None,
                  encoder_cls=None,
                  bypass_config: bool = False):
Hongkun Yu's avatar
Hongkun Yu committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  """Instantiate a Transformer encoder network from EncoderConfig.

  Args:
    config: the one-of encoder config, which provides encoder parameters of a
      chosen encoder.
    embedding_layer: an external embedding layer passed to the encoder.
    encoder_cls: an external encoder cls not included in the supported encoders,
      usually used by gin.configurable.
    bypass_config: whether to ignore config instance to create the object with
      `encoder_cls`.

  Returns:
    An encoder instance.
  """
  if bypass_config:
    return encoder_cls()
Frederick Liu's avatar
Frederick Liu committed
200
201
202
  encoder_type = config.type
  encoder_cfg = config.get()
  if encoder_cls and encoder_cls.__name__ == "EncoderScaffold":
Hongkun Yu's avatar
Hongkun Yu committed
203
    embedding_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
204
205
206
207
        vocab_size=encoder_cfg.vocab_size,
        type_vocab_size=encoder_cfg.type_vocab_size,
        hidden_size=encoder_cfg.hidden_size,
        max_seq_length=encoder_cfg.max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
208
        initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
209
210
            stddev=encoder_cfg.initializer_range),
        dropout_rate=encoder_cfg.dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
211
212
    )
    hidden_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
213
214
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
Hongkun Yu's avatar
Hongkun Yu committed
215
        intermediate_activation=tf_utils.get_activation(
Hongkun Yu's avatar
Hongkun Yu committed
216
217
218
            encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
219
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
220
            stddev=encoder_cfg.initializer_range),
Hongkun Yu's avatar
Hongkun Yu committed
221
222
223
224
    )
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cfg=hidden_cfg,
Hongkun Yu's avatar
Hongkun Yu committed
225
226
        num_hidden_instances=encoder_cfg.num_layers,
        pooled_output_dim=encoder_cfg.hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
227
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
Chen Chen's avatar
Chen Chen committed
228
            stddev=encoder_cfg.initializer_range),
229
230
        return_all_layer_outputs=encoder_cfg.return_all_encoder_outputs,
        dict_outputs=True)
Hongkun Yu's avatar
Hongkun Yu committed
231
232
    return encoder_cls(**kwargs)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
233
  if encoder_type == "mobilebert":
Frederick Liu's avatar
Frederick Liu committed
234
    return networks.MobileBERTEncoder(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
235
236
237
238
239
240
241
242
        word_vocab_size=encoder_cfg.word_vocab_size,
        word_embed_size=encoder_cfg.word_embed_size,
        type_vocab_size=encoder_cfg.type_vocab_size,
        max_sequence_length=encoder_cfg.max_sequence_length,
        num_blocks=encoder_cfg.num_blocks,
        hidden_size=encoder_cfg.hidden_size,
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
Chen Chen's avatar
Chen Chen committed
243
        intermediate_act_fn=encoder_cfg.hidden_activation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
244
245
246
        hidden_dropout_prob=encoder_cfg.hidden_dropout_prob,
        attention_probs_dropout_prob=encoder_cfg.attention_probs_dropout_prob,
        intra_bottleneck_size=encoder_cfg.intra_bottleneck_size,
Chen Chen's avatar
Chen Chen committed
247
        initializer_range=encoder_cfg.initializer_range,
Chen Chen's avatar
Chen Chen committed
248
        use_bottleneck_attention=encoder_cfg.use_bottleneck_attention,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
249
250
251
        key_query_shared_bottleneck=encoder_cfg.key_query_shared_bottleneck,
        num_feedforward_networks=encoder_cfg.num_feedforward_networks,
        normalization_type=encoder_cfg.normalization_type,
Chen Chen's avatar
Chen Chen committed
252
253
        classifier_activation=encoder_cfg.classifier_activation,
        input_mask_dtype=encoder_cfg.input_mask_dtype)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
254

Chen Chen's avatar
Chen Chen committed
255
  if encoder_type == "albert":
Frederick Liu's avatar
Frederick Liu committed
256
    return networks.AlbertEncoder(
Chen Chen's avatar
Chen Chen committed
257
258
259
260
261
262
263
264
265
266
267
268
        vocab_size=encoder_cfg.vocab_size,
        embedding_width=encoder_cfg.embedding_width,
        hidden_size=encoder_cfg.hidden_size,
        num_layers=encoder_cfg.num_layers,
        num_attention_heads=encoder_cfg.num_attention_heads,
        max_sequence_length=encoder_cfg.max_position_embeddings,
        type_vocab_size=encoder_cfg.type_vocab_size,
        intermediate_size=encoder_cfg.intermediate_size,
        activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
        initializer=tf.keras.initializers.TruncatedNormal(
269
270
            stddev=encoder_cfg.initializer_range),
        dict_outputs=True)
Chen Chen's avatar
Chen Chen committed
271

Hongkun Yu's avatar
Hongkun Yu committed
272
  if encoder_type == "bigbird":
Frederick Liu's avatar
Frederick Liu committed
273
274
275
276
    # TODO(frederickliu): Support use_gradient_checkpointing.
    if encoder_cfg.use_gradient_checkpointing:
      raise ValueError("Gradient checkpointing unsupported at the moment.")
    embedding_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
277
        vocab_size=encoder_cfg.vocab_size,
Frederick Liu's avatar
Frederick Liu committed
278
        type_vocab_size=encoder_cfg.type_vocab_size,
Hongkun Yu's avatar
Hongkun Yu committed
279
        hidden_size=encoder_cfg.hidden_size,
Frederick Liu's avatar
Frederick Liu committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        max_seq_length=encoder_cfg.max_position_embeddings,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        dropout_rate=encoder_cfg.dropout_rate)
    attention_cfg = dict(
        num_heads=encoder_cfg.num_attention_heads,
        key_dim=int(encoder_cfg.hidden_size // encoder_cfg.num_attention_heads),
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        max_rand_mask_length=encoder_cfg.max_position_embeddings,
        num_rand_blocks=encoder_cfg.num_rand_blocks,
        from_block_size=encoder_cfg.block_size,
        to_block_size=encoder_cfg.block_size,
        )
    hidden_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
295
296
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
Frederick Liu's avatar
Frederick Liu committed
297
298
        intermediate_activation=tf_utils.get_activation(
            encoder_cfg.hidden_activation),
Hongkun Yu's avatar
Hongkun Yu committed
299
300
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
Frederick Liu's avatar
Frederick Liu committed
301
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
302
            stddev=encoder_cfg.initializer_range),
303
        attention_cls=layers.BigBirdAttention,
Frederick Liu's avatar
Frederick Liu committed
304
305
306
307
308
309
        attention_cfg=attention_cfg)
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cls=layers.TransformerScaffold,
        hidden_cfg=hidden_cfg,
        num_hidden_instances=encoder_cfg.num_layers,
310
        mask_cls=layers.BigBirdMasks,
Frederick Liu's avatar
Frederick Liu committed
311
312
313
314
315
316
317
318
        mask_cfg=dict(block_size=encoder_cfg.block_size),
        pooled_output_dim=encoder_cfg.hidden_size,
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range),
        return_all_layer_outputs=False,
        dict_outputs=True,
        layer_idx_as_attention_seed=True)
    return networks.EncoderScaffold(**kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
319

Allen Wang's avatar
Allen Wang committed
320
  if encoder_type == "xlnet":
Frederick Liu's avatar
Frederick Liu committed
321
    return networks.XLNetBase(
Allen Wang's avatar
Allen Wang committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        vocab_size=encoder_cfg.vocab_size,
        num_layers=encoder_cfg.num_layers,
        hidden_size=encoder_cfg.hidden_size,
        num_attention_heads=encoder_cfg.num_attention_heads,
        head_size=encoder_cfg.head_size,
        inner_size=encoder_cfg.inner_size,
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
        attention_type=encoder_cfg.attention_type,
        bi_data=encoder_cfg.bi_data,
        two_stream=encoder_cfg.two_stream,
        tie_attention_biases=encoder_cfg.tie_attention_biases,
        memory_length=encoder_cfg.memory_length,
        clamp_length=encoder_cfg.clamp_length,
        reuse_length=encoder_cfg.reuse_length,
        inner_activation=encoder_cfg.inner_activation,
        use_cls_mask=encoder_cfg.use_cls_mask,
        embedding_width=encoder_cfg.embedding_width,
        initializer=tf.keras.initializers.RandomNormal(
            stddev=encoder_cfg.initializer_range))

Hongkun Yu's avatar
Hongkun Yu committed
343
344
  # Uses the default BERTEncoder configuration schema to create the encoder.
  # If it does not match, please add a switch branch by the encoder type.
Frederick Liu's avatar
Frederick Liu committed
345
  return networks.BertEncoder(
Hongkun Yu's avatar
Hongkun Yu committed
346
347
348
349
350
351
352
353
354
355
      vocab_size=encoder_cfg.vocab_size,
      hidden_size=encoder_cfg.hidden_size,
      num_layers=encoder_cfg.num_layers,
      num_attention_heads=encoder_cfg.num_attention_heads,
      intermediate_size=encoder_cfg.intermediate_size,
      activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
      dropout_rate=encoder_cfg.dropout_rate,
      attention_dropout_rate=encoder_cfg.attention_dropout_rate,
      max_sequence_length=encoder_cfg.max_position_embeddings,
      type_vocab_size=encoder_cfg.type_vocab_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
356
      initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
357
          stddev=encoder_cfg.initializer_range),
Frederick Liu's avatar
Frederick Liu committed
358
      output_range=encoder_cfg.output_range,
Hongkun Yu's avatar
Hongkun Yu committed
359
      embedding_width=encoder_cfg.embedding_size,
Chen Chen's avatar
Chen Chen committed
360
      embedding_layer=embedding_layer,
361
362
      return_all_encoder_outputs=encoder_cfg.return_all_encoder_outputs,
      dict_outputs=True)