"megatron/git@developer.sourcefind.cn:OpenDAS/megatron-lm.git" did not exist on "e46230dc4dd1f91c5f24ccafb2025389cb637aa7"
VariationalAutoencoder.py 3.01 KB
Newer Older
Jiří Vahala's avatar
Jiří Vahala committed
1
2
3
4
5
import tensorflow as tf
import numpy as np

class VariationalAutoencoder(object):

daviddao's avatar
daviddao committed
6
    def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer()):
Jiří Vahala's avatar
Jiří Vahala committed
7
8
9
10
11
12
13
14
15
16
17
18
        self.n_input = n_input
        self.n_hidden = n_hidden

        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1'])
        self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1'])

        # sample from gaussian distribution
19
20
        eps = tf.random_normal(tf.stack([tf.shape(self.x)[0], self.n_hidden]), 0, 1, dtype = tf.float32)
        self.z = tf.add(self.z_mean, tf.multiply(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
Jiří Vahala's avatar
Jiří Vahala committed
21
22
23
24

        self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2'])

        # cost
25
        reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
Jiří Vahala's avatar
Jiří Vahala committed
26
27
28
29
30
31
        latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
                                           - tf.square(self.z_mean)
                                           - tf.exp(self.z_log_sigma_sq), 1)
        self.cost = tf.reduce_mean(reconstr_loss + latent_loss)
        self.optimizer = optimizer.minimize(self.cost)

32
        init = tf.global_variables_initializer()
Jiří Vahala's avatar
Jiří Vahala committed
33
34
35
36
37
        self.sess = tf.Session()
        self.sess.run(init)

    def _initialize_weights(self):
        all_weights = dict()
38
39
40
41
        all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden],
            initializer=tf.contrib.layers.xavier_initializer())
        all_weights['log_sigma_w1'] = tf.get_variable("log_sigma_w1", shape=[self.n_input, self.n_hidden],
            initializer=tf.contrib.layers.xavier_initializer())
Jiří Vahala's avatar
Jiří Vahala committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
        all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
        return all_weights

    def partial_fit(self, X):
        cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
        return cost

    def calc_total_cost(self, X):
        return self.sess.run(self.cost, feed_dict = {self.x: X})

    def transform(self, X):
        return self.sess.run(self.z_mean, feed_dict={self.x: X})

    def generate(self, hidden = None):
        if hidden is None:
            hidden = np.random.normal(size=self.weights["b1"])
        return self.sess.run(self.reconstruction, feed_dict={self.z_mean: hidden})

    def reconstruct(self, X):
        return self.sess.run(self.reconstruction, feed_dict={self.x: X})

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])