VariationalAutoencoder.py 2.91 KB
Newer Older
Jiří Vahala's avatar
Jiří Vahala committed
1
2
3
4
5
6
import tensorflow as tf
import numpy as np
import autoencoder.Utils

class VariationalAutoencoder(object):

daviddao's avatar
daviddao committed
7
    def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer()):
Jiří Vahala's avatar
Jiří Vahala committed
8
9
10
11
12
13
14
15
16
17
18
19
        self.n_input = n_input
        self.n_hidden = n_hidden

        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1'])
        self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1'])

        # sample from gaussian distribution
daviddao's avatar
daviddao committed
20
        eps = tf.random_normal(tf.pack([tf.shape(self.x)[0], self.n_hidden]), 0, 1, dtype = tf.float32)
Jiří Vahala's avatar
Jiří Vahala committed
21
22
23
24
25
26
27
28
29
30
31
32
        self.z = tf.add(self.z_mean, tf.mul(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))

        self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2'])

        # cost
        reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0))
        latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
                                           - tf.square(self.z_mean)
                                           - tf.exp(self.z_log_sigma_sq), 1)
        self.cost = tf.reduce_mean(reconstr_loss + latent_loss)
        self.optimizer = optimizer.minimize(self.cost)

33
        init = tf.global_variables_initializer()
Jiří Vahala's avatar
Jiří Vahala committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        self.sess = tf.Session()
        self.sess.run(init)

    def _initialize_weights(self):
        all_weights = dict()
        all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
        all_weights['log_sigma_w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
        all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
        return all_weights

    def partial_fit(self, X):
        cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
        return cost

    def calc_total_cost(self, X):
        return self.sess.run(self.cost, feed_dict = {self.x: X})

    def transform(self, X):
        return self.sess.run(self.z_mean, feed_dict={self.x: X})

    def generate(self, hidden = None):
        if hidden is None:
            hidden = np.random.normal(size=self.weights["b1"])
        return self.sess.run(self.reconstruction, feed_dict={self.z_mean: hidden})

    def reconstruct(self, X):
        return self.sess.run(self.reconstruction, feed_dict={self.x: X})

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])