"magic_pdf/vscode:/vscode.git/clone" did not exist on "50f48417162c9f9413580f4eb2edbf382a5afdae"
model_training_utils.py 16.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to train BERT models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
23
24
25
26
import os

from absl import logging
import tensorflow as tf

27
28
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

def get_primary_cpu_task(use_remote_tpu=False):
  """Returns primary CPU task to which input pipeline Ops are put."""

  # Remote Eager Borg job configures the TPU worker with job name 'worker'.
  return '/job:worker' if use_remote_tpu else ''


def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info('Saving model as TF checkpoint: %s', saved_path)
  return


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""

  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
  input_data = input_fn()
  if callable(input_data):
    iterator = iter(
        strategy.experimental_distribute_datasets_from_function(input_data))
  else:
    iterator = iter(strategy.experimental_distribute_dataset(input_data))
  return iterator


62
63
64
65
66
67
68
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


def _steps_to_run(current_step, steps_per_epoch, steps_per_loop):
  """Calculates steps to run on device."""
69
70
71
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
72
73
74
75
76
77
78
79
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


80
81
82
83
84
85
86
87
def _write_txt_summary(training_summary, model_dir):
  """Writes a summary text file to record stats."""
  summary_path = os.path.join(model_dir, _SUMMARY_TXT)
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


88
89
90
91
92
93
94
95
96
97
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
98
    steps_per_loop=1,
99
100
101
102
103
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
104
    use_remote_tpu=False,
105
106
    custom_callbacks=None,
    run_eagerly=False):
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
122
123
124
125
126
127
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
128
129
130
131
132
133
134
135
136
137
138
139
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
      use_remote_tpu: If true, input pipeline ops are placed in TPU worker host
        as an optimization.
140
      custom_callbacks: A list of Keras Callbacks objects to run during
141
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
142
        methods are invoked during training.
143
144
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
164
165
166
167
168
169
170
171
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
172
173
  assert tf.executing_eagerly()

174
175
176
177
178
179
180
181
182
183
  if run_eagerly:
    if steps_per_loop > 1:
      raise ValueError(
          'steps_per_loop is used for performance optimization. When you want '
          'to run eagerly, you cannot leverage graph mode loop.')
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
          'TPUStrategy should not run eagerly as it heavily replies on graph'
          ' optimization for the distributed system.')

184
185
186
187
188
189
190
191
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

192
193
  total_training_steps = steps_per_epoch * epochs

194
195
196
  # To reduce unnecessary send/receive input pipeline operation, we place input
  # pipeline ops in worker task.
  with tf.device(get_primary_cpu_task(use_remote_tpu)):
197
198
    train_iterator = _get_input_iterator(train_input_fn, strategy)

199
200
201
202
203
204
205
206
207
208
    with strategy.scope():
      # To correctly place the model weights on accelerators,
      # model and optimizer should be created in scope.
      model, sub_model = model_fn()
      if not hasattr(model, 'optimizer'):
        raise ValueError('User should set optimizer attribute to model '
                         'inside `model_fn`.')
      optimizer = model.optimizer

      if init_checkpoint:
209
210
211
212
213
214
        logging.info(
            'Checkpoint file %s found and restoring from '
            'initial checkpoint for core model.', init_checkpoint)
        checkpoint = tf.train.Checkpoint(model=sub_model)
        checkpoint.restore(init_checkpoint).assert_consumed()
        logging.info('Loading from checkpoint file completed')
215

216
217
      train_loss_metric = tf.keras.metrics.Mean(
          'training_loss', dtype=tf.float32)
218
      eval_metrics = [metric_fn()] if metric_fn else []
219
220
      # If evaluation is required, make a copy of metric as it will be used by
      # both train and evaluation.
221
222
223
224
      train_metrics = [
          metric.__class__.from_config(metric.get_config())
          for metric in eval_metrics
      ]
225

226
227
228
229
230
231
232
233
234
235
236
      # Create summary writers
      eval_summary_writer = tf.summary.create_file_writer(
          os.path.join(model_dir, 'summaries/eval'))
      if steps_per_loop >= _MIN_SUMMARY_STEPS:
        # Only writes summary when the stats are collected sufficiently over
        # enough steps.
        train_summary_writer = tf.summary.create_file_writer(
            os.path.join(model_dir, 'summaries/train'))
      else:
        train_summary_writer = None

237
238
239
240
241
242
243
244
      def _replicated_step(inputs):
        """Replicated training step."""

        inputs, labels = inputs
        with tf.GradientTape() as tape:
          model_outputs = model(inputs)
          loss = loss_fn(labels, model_outputs)

245
246
        # De-dupes variables due to keras tracking issues.
        tvars = list(set(model.trainable_variables))
247
248
249
250
        grads = tape.gradient(loss, tvars)
        optimizer.apply_gradients(zip(grads, tvars))
        # For reporting, the metric takes the mean of losses.
        train_loss_metric.update_state(loss)
251
252
        for metric in train_metrics:
          metric.update_state(labels, model_outputs)
253

254
      @tf.function
255
256
      def train_steps(iterator, steps):
        """Performs distributed training steps in a loop.
257
258
259
260
261

        Args:
          iterator: the distributed iterator of training datasets.
          steps: an tf.int32 integer tensor to specify number of steps to run
            inside host training loop.
262

263
264
265
266
267
268
        Raises:
          ValueError: Any of the arguments or tensor shapes are invalid.
        """
        if not isinstance(steps, tf.Tensor):
          raise ValueError('steps should be an Tensor. Python object may cause '
                           'retracing.')
269

270
271
        for _ in tf.range(steps):
          strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
272

273
274
275
276
277
      def train_single_step(iterator):
        """Performs a distributed training step.

        Args:
          iterator: the distributed iterator of training datasets.
278

279
280
281
282
283
        Raises:
          ValueError: Any of the arguments or tensor shapes are invalid.
        """
        strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))

284
285
286
287
288
289
290
291
      def test_step(iterator):
        """Calculates evaluation metrics on distributed devices."""

        def _test_step_fn(inputs):
          """Replicated accuracy calculation."""

          inputs, labels = inputs
          model_outputs = model(inputs, training=False)
292
293
          for metric in eval_metrics:
            metric.update_state(labels, model_outputs)
294

295
        strategy.experimental_run_v2(_test_step_fn, args=(next(iterator),))
296

297
298
299
300
      if not run_eagerly:
        train_single_step = tf.function(train_single_step)
        test_step = tf.function(test_step)

301
      def _run_evaluation(current_training_step, test_iterator):
302
303
304
        """Runs validation steps and aggregate metrics."""
        for _ in range(eval_steps):
          test_step(test_iterator)
305

306
        with eval_summary_writer.as_default():
307
308
309
310
311
312
          for metric in eval_metrics + model.metrics:
            metric_value = _float_metric_value(metric)
            logging.info('Step: [%d] Validation %s = %f', current_training_step,
                         metric.name, metric_value)
            tf.summary.scalar(
                metric.name, metric_value, step=current_training_step)
313
          eval_summary_writer.flush()
314

315
      def _run_callbacks_on_batch_begin(batch):
316
317
318
319
        """Runs custom callbacks at the start of every step."""
        if not custom_callbacks:
          return
        for callback in custom_callbacks:
320
          callback.on_batch_begin(batch)
321
322
323
324
325
326
327
328

      def _run_callbacks_on_batch_end(batch):
        """Runs custom callbacks at the end of every step."""
        if not custom_callbacks:
          return
        for callback in custom_callbacks:
          callback.on_batch_end(batch)

329
      # Training loop starts here.
330
      checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
331
332
333
334
335
      latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
      if latest_checkpoint_file:
        logging.info(
            'Checkpoint file %s found and restoring from '
            'checkpoint', latest_checkpoint_file)
336
        checkpoint.restore(latest_checkpoint_file)
337
338
339
340
341
342
        logging.info('Loading from checkpoint file completed')

      current_step = optimizer.iterations.numpy()
      checkpoint_name = 'ctl_step_{step}.ckpt'

      while current_step < total_training_steps:
343
344
345
        # Training loss/metric are taking average over steps inside micro
        # training loop. We reset the their values before each round.
        train_loss_metric.reset_states()
346
347
        for metric in train_metrics + model.metrics:
          metric.reset_states()
348

349
350
351
        _run_callbacks_on_batch_begin(current_step)
        # Runs several steps in the host while loop.
        steps = _steps_to_run(current_step, steps_per_epoch, steps_per_loop)
352
353
354
355
356
357
358
359
360

        if steps == 1:
          # TODO(zongweiz): merge with train_steps once tf.while_loop
          # GPU performance bugs are fixed.
          train_single_step(train_iterator)
        else:
          # Converts steps to a Tensor to avoid tf.function retracing.
          train_steps(train_iterator,
                      tf.convert_to_tensor(steps, dtype=tf.int32))
361
362
        _run_callbacks_on_batch_end(current_step)
        current_step += steps
363

364
        train_loss = _float_metric_value(train_loss_metric)
365
366
        # Updates training logging.
        training_status = 'Train Step: %d/%d  / loss = %s' % (
367
            current_step, total_training_steps, train_loss)
368

369
370
371
372
        if train_summary_writer:
          with train_summary_writer.as_default():
            tf.summary.scalar(
                train_loss_metric.name, train_loss, step=current_step)
373
374
375
376
            for metric in train_metrics + model.metrics:
              metric_value = _float_metric_value(metric)
              training_status += '  %s = %f' % (metric.name, metric_value)
              tf.summary.scalar(metric.name, metric_value, step=current_step)
377
            train_summary_writer.flush()
378
        logging.info(training_status)
379

380
381
382
383
384
385
386
387
388
389
        # Saves model checkpoints and run validation steps at every epoch end.
        if current_step % steps_per_epoch == 0:
          # To avoid repeated model saving, we do not save after the last
          # step of training.
          if current_step < total_training_steps:
            _save_checkpoint(checkpoint, model_dir,
                             checkpoint_name.format(step=current_step))

          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
390
391
            _run_evaluation(current_step,
                            _get_input_iterator(eval_input_fn, strategy))
392
            # Re-initialize evaluation metric.
393
394
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
395
396
397
398
399
400

      _save_checkpoint(checkpoint, model_dir,
                       checkpoint_name.format(step=current_step))

      if eval_input_fn:
        logging.info('Running final evaluation after training is complete.')
401
402
        _run_evaluation(current_step,
                        _get_input_iterator(eval_input_fn, strategy))
403
404
405

      training_summary = {
          'total_training_steps': total_training_steps,
406
          'train_loss': _float_metric_value(train_loss_metric),
407
      }
408
409
      if eval_metrics:
        # TODO(hongkuny): Cleans up summary reporting in text.
410
        training_summary['last_train_metrics'] = _float_metric_value(
411
412
            train_metrics[0])
        training_summary['eval_metricss'] = _float_metric_value(eval_metrics[0])
413

414
      _write_txt_summary(training_summary, model_dir)
415
416

      return model