image_classification.py 10.2 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Xianzhi Du's avatar
Xianzhi Du committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Image classification configuration definition."""
import dataclasses
Fan Yang's avatar
Fan Yang committed
17
18
import os
from typing import Optional
Xianzhi Du's avatar
Xianzhi Du committed
19
20
21
22
23
24

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.core import task_factory
from official.modeling import hyperparams
from official.modeling import optimization
Fan Yang's avatar
Fan Yang committed
25
from official.projects.vit.configs import backbones
Xianzhi Du's avatar
Xianzhi Du committed
26
27
28
from official.vision.configs import common
from official.vision.configs import image_classification as img_cls_cfg
from official.vision.tasks import image_classification
Xianzhi Du's avatar
Xianzhi Du committed
29

Fan Yang's avatar
Fan Yang committed
30
31
# pytype: disable=wrong-keyword-args

Xianzhi Du's avatar
Xianzhi Du committed
32
33
34
35
DataConfig = img_cls_cfg.DataConfig


@dataclasses.dataclass
Fan Yang's avatar
Fan Yang committed
36
class ImageClassificationModel(img_cls_cfg.ImageClassificationModel):
Xianzhi Du's avatar
Xianzhi Du committed
37
38
39
40
41
42
43
  """The model config."""
  backbone: backbones.Backbone = backbones.Backbone(
      type='vit', vit=backbones.VisionTransformer())


@dataclasses.dataclass
class Losses(hyperparams.Config):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
44
  loss_weight: float = 1.0
Xianzhi Du's avatar
Xianzhi Du committed
45
46
47
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0
48
  soft_labels: bool = False
Xianzhi Du's avatar
Xianzhi Du committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


@dataclasses.dataclass
class ImageClassificationTask(cfg.TaskConfig):
  """The task config. Same as the classification task for convnets."""
  model: ImageClassificationModel = ImageClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  evaluation: Evaluation = Evaluation()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'

# TODO(b/177942984): integrate the experiments to TF-vision.
task_factory.register_task_cls(ImageClassificationTask)(
    image_classification.ImageClassificationTask)


Simon Geisler's avatar
Simon Geisler committed
77
@exp_factory.register_config_factory('deit_imagenet_pretrain')
Simon Geisler's avatar
Simon Geisler committed
78
def image_classification_imagenet_deit_pretrain() -> cfg.ExperimentConfig:
79
  """Image classification on imagenet with vision transformer."""
Simon Geisler's avatar
Simon Geisler committed
80
81
  train_batch_size = 4096  # originally was 1024 but 4096 better for tpu v3-32
  eval_batch_size = 4096  # originally was 1024 but 4096 better for tpu v3-32
82
83
  num_classes = 1001
  label_smoothing = 0.1
Simon Geisler's avatar
Simon Geisler committed
84
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=num_classes,
              input_size=[224, 224, 3],
              kernel_initializer='zeros',
              backbone=backbones.Backbone(
                  type='vit',
                  vit=backbones.VisionTransformer(
                      model_name='vit-b16',
                      representation_size=768,
                      init_stochastic_depth_rate=0.1,
                      original_init=False,
                      transformer=backbones.Transformer(
                          dropout_rate=0.0, attention_dropout_rate=0.0)))),
100
101
102
103
104
          losses=Losses(
              l2_weight_decay=0.0,
              label_smoothing=label_smoothing,
              one_hot=False,
              soft_labels=True),
105
106
107
108
109
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              aug_type=common.Augmentation(
110
111
                  type='randaug',
                  randaug=common.RandAugment(
112
113
                      magnitude=9, exclude_ops=['Cutout'])),
              mixup_and_cutmix=common.MixupAndCutmix(
114
                  label_smoothing=label_smoothing)),
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=300 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'adamw',
                  'adamw': {
                      'weight_decay_rate': 0.05,
                      'include_in_weight_decay': r'.*(kernel|weight):0$',
132
133
                      'gradient_clip_norm': 0.0
                  }
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      'initial_learning_rate': 0.0005 * train_batch_size / 512,
                      'decay_steps': 300 * steps_per_epoch,
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


Xianzhi Du's avatar
Xianzhi Du committed
158
159
160
161
162
163
164
165
166
167
168
@exp_factory.register_config_factory('vit_imagenet_pretrain')
def image_classification_imagenet_vit_pretrain() -> cfg.ExperimentConfig:
  """Image classification on imagenet with vision transformer."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
169
              kernel_initializer='zeros',
Xianzhi Du's avatar
Xianzhi Du committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
              backbone=backbones.Backbone(
                  type='vit',
                  vit=backbones.VisionTransformer(
                      model_name='vit-b16', representation_size=768))),
          losses=Losses(l2_weight_decay=0.0),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=300 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'adamw',
                  'adamw': {
                      'weight_decay_rate': 0.3,
                      'include_in_weight_decay': r'.*(kernel|weight):0$',
196
                      'gradient_clip_norm': 0.0
Xianzhi Du's avatar
Xianzhi Du committed
197
198
199
200
201
                  }
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
202
                      'initial_learning_rate': 0.003 * train_batch_size / 4096,
Xianzhi Du's avatar
Xianzhi Du committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                      'decay_steps': 300 * steps_per_epoch,
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 10000,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('vit_imagenet_finetune')
def image_classification_imagenet_vit_finetune() -> cfg.ExperimentConfig:
  """Image classification on imagenet with vision transformer."""
  train_batch_size = 512
  eval_batch_size = 512
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[384, 384, 3],
              backbone=backbones.Backbone(
                  type='vit',
                  vit=backbones.VisionTransformer(model_name='vit-b16'))),
          losses=Losses(l2_weight_decay=0.0),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=20000,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9,
                      'global_clipnorm': 1.0,
                  }
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      'initial_learning_rate': 0.003,
                      'decay_steps': 20000,
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config