image_classification.py 10.6 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Xianzhi Du's avatar
Xianzhi Du committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Image classification configuration definition."""
import os
from typing import List, Optional

import dataclasses

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.core import task_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
from official.vision.beta.configs import image_classification as img_cls_cfg
Xianzhi Du's avatar
Xianzhi Du committed
29
from official.projects.vit.configs import backbones
Xianzhi Du's avatar
Xianzhi Du committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from official.vision.beta.tasks import image_classification

DataConfig = img_cls_cfg.DataConfig


@dataclasses.dataclass
class ImageClassificationModel(hyperparams.Config):
  """The model config."""
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='vit', vit=backbones.VisionTransformer())
  dropout_rate: float = 0.0
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
  # Adds a BatchNormalization layer pre-GlobalAveragePooling in classification
  add_head_batch_norm: bool = False
47
  kernel_initializer: str = 'random_uniform'
Xianzhi Du's avatar
Xianzhi Du committed
48
49
50
51


@dataclasses.dataclass
class Losses(hyperparams.Config):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
52
  loss_weight: float = 1.0
Xianzhi Du's avatar
Xianzhi Du committed
53
54
55
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0
56
  soft_labels: bool = False
Xianzhi Du's avatar
Xianzhi Du committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


@dataclasses.dataclass
class ImageClassificationTask(cfg.TaskConfig):
  """The task config. Same as the classification task for convnets."""
  model: ImageClassificationModel = ImageClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  evaluation: Evaluation = Evaluation()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'

# TODO(b/177942984): integrate the experiments to TF-vision.
task_factory.register_task_cls(ImageClassificationTask)(
    image_classification.ImageClassificationTask)


Simon Geisler's avatar
Simon Geisler committed
85
@exp_factory.register_config_factory('deit_imagenet_pretrain')
Simon Geisler's avatar
Simon Geisler committed
86
def image_classification_imagenet_deit_pretrain() -> cfg.ExperimentConfig:
87
  """Image classification on imagenet with vision transformer."""
Simon Geisler's avatar
Simon Geisler committed
88
89
  train_batch_size = 4096  # originally was 1024 but 4096 better for tpu v3-32
  eval_batch_size = 4096  # originally was 1024 but 4096 better for tpu v3-32
90
91
  num_classes = 1001
  label_smoothing = 0.1
Simon Geisler's avatar
Simon Geisler committed
92
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=num_classes,
              input_size=[224, 224, 3],
              kernel_initializer='zeros',
              backbone=backbones.Backbone(
                  type='vit',
                  vit=backbones.VisionTransformer(
                      model_name='vit-b16',
                      representation_size=768,
                      init_stochastic_depth_rate=0.1,
                      original_init=False,
                      transformer=backbones.Transformer(
                          dropout_rate=0.0, attention_dropout_rate=0.0)))),
108
109
110
111
112
          losses=Losses(
              l2_weight_decay=0.0,
              label_smoothing=label_smoothing,
              one_hot=False,
              soft_labels=True),
113
114
115
116
117
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              aug_type=common.Augmentation(
118
119
                  type='randaug',
                  randaug=common.RandAugment(
120
121
                      magnitude=9, exclude_ops=['Cutout'])),
              mixup_and_cutmix=common.MixupAndCutmix(
122
                  label_smoothing=label_smoothing)),
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=300 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'adamw',
                  'adamw': {
                      'weight_decay_rate': 0.05,
                      'include_in_weight_decay': r'.*(kernel|weight):0$',
140
141
                      'gradient_clip_norm': 0.0
                  }
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      'initial_learning_rate': 0.0005 * train_batch_size / 512,
                      'decay_steps': 300 * steps_per_epoch,
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


Xianzhi Du's avatar
Xianzhi Du committed
166
167
168
169
170
171
172
173
174
175
176
@exp_factory.register_config_factory('vit_imagenet_pretrain')
def image_classification_imagenet_vit_pretrain() -> cfg.ExperimentConfig:
  """Image classification on imagenet with vision transformer."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
177
              kernel_initializer='zeros',
Xianzhi Du's avatar
Xianzhi Du committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
              backbone=backbones.Backbone(
                  type='vit',
                  vit=backbones.VisionTransformer(
                      model_name='vit-b16', representation_size=768))),
          losses=Losses(l2_weight_decay=0.0),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=300 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'adamw',
                  'adamw': {
                      'weight_decay_rate': 0.3,
                      'include_in_weight_decay': r'.*(kernel|weight):0$',
204
                      'gradient_clip_norm': 0.0
Xianzhi Du's avatar
Xianzhi Du committed
205
206
207
208
209
                  }
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
210
                      'initial_learning_rate': 0.003 * train_batch_size / 4096,
Xianzhi Du's avatar
Xianzhi Du committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
                      'decay_steps': 300 * steps_per_epoch,
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 10000,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('vit_imagenet_finetune')
def image_classification_imagenet_vit_finetune() -> cfg.ExperimentConfig:
  """Image classification on imagenet with vision transformer."""
  train_batch_size = 512
  eval_batch_size = 512
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[384, 384, 3],
              backbone=backbones.Backbone(
                  type='vit',
                  vit=backbones.VisionTransformer(model_name='vit-b16'))),
          losses=Losses(l2_weight_decay=0.0),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=20000,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9,
                      'global_clipnorm': 1.0,
                  }
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      'initial_learning_rate': 0.003,
                      'decay_steps': 20000,
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config