retinanet.py 14.1 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
"""RetinaNet configuration definition."""

import os
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21

22
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.configs import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  regenerate_source_id: bool = False


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  regenerate_source_id: bool = False
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = TfExampleDecoder()
  label_map_decoder: TfExampleDecoderLabelMap = TfExampleDecoderLabelMap()


@dataclasses.dataclass
class Parser(hyperparams.Config):
  num_channels: int = 3
  match_threshold: float = 0.5
  unmatched_threshold: float = 0.5
  aug_rand_hflip: bool = False
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  skip_crowd_during_training: bool = True
  max_num_instances: int = 100


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: DataDecoder = DataDecoder()
  parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
  file_type: str = 'tfrecord'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


@dataclasses.dataclass
class Anchor(hyperparams.Config):
  num_scales: int = 3
  aspect_ratios: List[float] = dataclasses.field(
      default_factory=lambda: [0.5, 1.0, 2.0])
  anchor_size: float = 4.0


@dataclasses.dataclass
class Losses(hyperparams.Config):
  focal_loss_alpha: float = 0.25
  focal_loss_gamma: float = 1.5
  huber_loss_delta: float = 0.1
  box_loss_weight: int = 50
  l2_weight_decay: float = 0.0


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
94
95
96
97
98
@dataclasses.dataclass
class AttributeHead(hyperparams.Config):
  name: str = ''
  type: str = 'regression'
  size: int = 1


Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
101
102
103
@dataclasses.dataclass
class RetinaNetHead(hyperparams.Config):
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
  attribute_heads: Optional[List[AttributeHead]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
106
107
108


@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
Fan Yang's avatar
Fan Yang committed
109
  apply_nms: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  pre_nms_top_k: int = 5000
  pre_nms_score_threshold: float = 0.05
  nms_iou_threshold: float = 0.5
  max_num_detections: int = 100
  use_batched_nms: bool = False


@dataclasses.dataclass
class RetinaNet(hyperparams.Config):
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 7
  anchor: Anchor = Anchor()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(
      type='fpn', fpn=decoders.FPN())
  head: RetinaNetHead = RetinaNetHead()
  detection_generator: DetectionGenerator = DetectionGenerator()
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class RetinaNetTask(cfg.TaskConfig):
  model: RetinaNet = RetinaNet()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Zhenyu Tan's avatar
Zhenyu Tan committed
141
  annotation_file: Optional[str] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
142
  per_category_metrics: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156


@exp_factory.register_config_factory('retinanet')
def retinanet() -> cfg.ExperimentConfig:
  """RetinaNet general config."""
  return cfg.ExperimentConfig(
      task=RetinaNetTask(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


COCO_INPUT_PATH_BASE = 'coco'
157
COCO_TRAIN_EXAMPLES = 118287
Abdullah Rashwan's avatar
Abdullah Rashwan committed
158
159
160
161
162
163
164
165
COCO_VAL_EXAMPLES = 5000


@exp_factory.register_config_factory('retinanet_resnetfpn_coco')
def retinanet_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet."""
  train_batch_size = 256
  eval_batch_size = 8
166
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
169
170
171
172

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=RetinaNetTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
Zhenyu Tan's avatar
Zhenyu Tan committed
173
174
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
          model=RetinaNet(
              num_classes=91,
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          train_steps=72 * steps_per_epoch,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          57 * steps_per_epoch, 67 * steps_per_epoch
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
214
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('retinanet_spinenet_coco')
def retinanet_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet using SpineNet backbone."""
  train_batch_size = 256
  eval_batch_size = 8
239
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
240
241
242
243
244
  input_size = 640

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
      task=RetinaNetTask(
Zhenyu Tan's avatar
Zhenyu Tan committed
245
246
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
247
248
249
          model=RetinaNet(
              backbone=backbones.Backbone(
                  type='spinenet',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
250
                  spinenet=backbones.SpineNet(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
251
252
253
254
                      model_id='49',
                      stochastic_depth_drop_rate=0.2,
                      min_level=3,
                      max_level=7)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
255
256
257
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              anchor=Anchor(anchor_size=3),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
258
259
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
260
261
262
263
264
265
266
267
268
269
              num_classes=91,
              input_size=[input_size, input_size, 3],
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=4e-5),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
270
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
273
274
275
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
276
          train_steps=500 * steps_per_epoch,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
293
                          475 * steps_per_epoch, 490 * steps_per_epoch
Abdullah Rashwan's avatar
Abdullah Rashwan committed
294
295
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
296
297
298
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
299
300
301
302
303
304
305
306
307
308
309
310
311
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
313
314
          'task.validation_data.is_training != None',
          'task.model.min_level == task,model.backbone.spinenet.min_level',
          'task.model.max_level == task,model.backbone.spinenet.max_level',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
315
316
317
      ])

  return config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336


@exp_factory.register_config_factory('retinanet_spinenet_mobile_coco')
def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet using Mobile SpineNet backbone."""
  train_batch_size = 256
  eval_batch_size = 8
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  input_size = 384

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
      task=RetinaNetTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=RetinaNet(
              backbone=backbones.Backbone(
                  type='spinenet_mobile',
                  spinenet_mobile=backbones.SpineNetMobile(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
337
338
339
340
                      model_id='49',
                      stochastic_depth_drop_rate=0.2,
                      min_level=3,
                      max_level=7)),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
342
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
343
              head=RetinaNetHead(num_filters=48, use_separable_conv=True),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
344
345
346
347
348
349
350
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
              num_classes=91,
              input_size=[input_size, input_size, 3],
              min_level=3,
              max_level=7),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
351
          losses=Losses(l2_weight_decay=3e-5),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          train_steps=600 * steps_per_epoch,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          575 * steps_per_epoch, 590 * steps_per_epoch
                      ],
                      'values': [
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
399
400
401
          'task.validation_data.is_training != None',
          'task.model.min_level == task,model.backbone.spinenet_mobile.min_level',
          'task.model.max_level == task,model.backbone.spinenet_mobile.max_level',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
402
403
404
      ])

  return config