Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
a08b2932
Commit
a08b2932
authored
Mar 23, 2021
by
A. Unique TensorFlower
Browse files
Internal change
PiperOrigin-RevId: 364620438
parent
02828808
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
179 additions
and
1 deletion
+179
-1
official/vision/beta/configs/experiments/retinanet/coco_spinenet49_mobile_tpu.yaml
...igs/experiments/retinanet/coco_spinenet49_mobile_tpu.yaml
+59
-0
official/vision/beta/configs/experiments/retinanet/coco_spinenet49s_mobile_tpu.yaml
...gs/experiments/retinanet/coco_spinenet49s_mobile_tpu.yaml
+59
-0
official/vision/beta/configs/experiments/retinanet/coco_spinenet49xs_mobile_tpu.yaml
...s/experiments/retinanet/coco_spinenet49xs_mobile_tpu.yaml
+59
-0
official/vision/beta/configs/retinanet.py
official/vision/beta/configs/retinanet.py
+2
-1
No files found.
official/vision/beta/configs/experiments/retinanet/coco_spinenet49_mobile_tpu.yaml
0 → 100644
View file @
a08b2932
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
3.0e-05
model
:
anchor
:
anchor_size
:
3
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
spinenet_mobile
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49'
se_ratio
:
0.2
type
:
'
spinenet_mobile'
decoder
:
type
:
'
identity'
head
:
num_convs
:
4
num_filters
:
48
use_separable_conv
:
true
input_size
:
[
384
,
384
,
3
]
max_level
:
7
min_level
:
3
norm_activation
:
activation
:
'
swish'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.1
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
checkpoint_interval
:
462
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
265650
,
272580
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
277200
validation_interval
:
462
validation_steps
:
625
official/vision/beta/configs/experiments/retinanet/coco_spinenet49s_mobile_tpu.yaml
0 → 100644
View file @
a08b2932
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
3.0e-05
model
:
anchor
:
anchor_size
:
3
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
spinenet_mobile
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49S'
se_ratio
:
0.2
type
:
'
spinenet_mobile'
decoder
:
type
:
'
identity'
head
:
num_convs
:
4
num_filters
:
40
use_separable_conv
:
true
input_size
:
[
384
,
384
,
3
]
max_level
:
7
min_level
:
3
norm_activation
:
activation
:
'
swish'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.1
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
checkpoint_interval
:
462
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
265650
,
272580
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
277200
validation_interval
:
462
validation_steps
:
625
official/vision/beta/configs/experiments/retinanet/coco_spinenet49xs_mobile_tpu.yaml
0 → 100644
View file @
a08b2932
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
3.0e-05
model
:
anchor
:
anchor_size
:
3
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
spinenet_mobile
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49XS'
se_ratio
:
0.2
type
:
'
spinenet_mobile'
decoder
:
type
:
'
identity'
head
:
num_convs
:
4
num_filters
:
24
use_separable_conv
:
false
input_size
:
[
256
,
256
,
3
]
max_level
:
7
min_level
:
3
norm_activation
:
activation
:
'
swish'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.1
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
checkpoint_interval
:
462
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
265650
,
272580
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
277200
validation_interval
:
462
validation_steps
:
625
official/vision/beta/configs/retinanet.py
View file @
a08b2932
...
@@ -322,6 +322,7 @@ def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
...
@@ -322,6 +322,7 @@ def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
model_id
=
'49'
,
stochastic_depth_drop_rate
=
0.2
)),
model_id
=
'49'
,
stochastic_depth_drop_rate
=
0.2
)),
decoder
=
decoders
.
Decoder
(
decoder
=
decoders
.
Decoder
(
type
=
'identity'
,
identity
=
decoders
.
Identity
()),
type
=
'identity'
,
identity
=
decoders
.
Identity
()),
head
=
RetinaNetHead
(
num_filters
=
48
,
use_separable_conv
=
True
),
anchor
=
Anchor
(
anchor_size
=
3
),
anchor
=
Anchor
(
anchor_size
=
3
),
norm_activation
=
common
.
NormActivation
(
norm_activation
=
common
.
NormActivation
(
use_sync_bn
=
True
,
activation
=
'swish'
),
use_sync_bn
=
True
,
activation
=
'swish'
),
...
@@ -329,7 +330,7 @@ def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
...
@@ -329,7 +330,7 @@ def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
input_size
=
[
input_size
,
input_size
,
3
],
input_size
=
[
input_size
,
input_size
,
3
],
min_level
=
3
,
min_level
=
3
,
max_level
=
7
),
max_level
=
7
),
losses
=
Losses
(
l2_weight_decay
=
4
e-5
),
losses
=
Losses
(
l2_weight_decay
=
3
e-5
),
train_data
=
DataConfig
(
train_data
=
DataConfig
(
input_path
=
os
.
path
.
join
(
COCO_INPUT_PATH_BASE
,
'train*'
),
input_path
=
os
.
path
.
join
(
COCO_INPUT_PATH_BASE
,
'train*'
),
is_training
=
True
,
is_training
=
True
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment