imagenet_main.py 13.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from six.moves import range
26
import tensorflow as tf
27

28
29
30
from official.r1.resnet import imagenet_preprocessing
from official.r1.resnet import resnet_model
from official.r1.resnet import resnet_run_loop
31
from official.utils.flags import core as flags_core
32
from official.utils.logs import logger
33

34
35
36
DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001
37

38
NUM_IMAGES = {
39
40
41
    'train': 1281167,
    'validation': 50000,
}
42

43
_NUM_TRAIN_FILES = 1024
44
_SHUFFLE_BUFFER = 10000
45

46
DATASET_NAME = 'ImageNet'
47

48
49
50
###############################################################################
# Data processing
###############################################################################
51
def get_filenames(is_training, data_dir):
52
53
54
  """Return filenames for dataset."""
  if is_training:
    return [
55
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
56
        for i in range(_NUM_TRAIN_FILES)]
57
58
  else:
    return [
59
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
60
        for i in range(128)]
61
62


63
64
65
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
85
86
87
88
89
90
91

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
92
93
94
95
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
96
97
98
  """
  # Dense features in Example proto.
  feature_map = {
99
      'image/encoded': tf.io.FixedLenFeature([], dtype=tf.string,
100
                                             default_value=''),
101
102
103
104
      'image/class/label': tf.io.FixedLenFeature([], dtype=tf.int64,
                                                 default_value=-1),
      'image/class/text': tf.io.FixedLenFeature([], dtype=tf.string,
                                                default_value=''),
105
  }
106
  sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
107
108
109
110
111
112
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
113

114
115
  features = tf.io.parse_single_example(serialized=example_serialized,
                                        features=feature_map)
116
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
117

118
119
120
121
122
123
124
125
126
127
128
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
129
  bbox = tf.transpose(a=bbox, perm=[0, 2, 1])
130
131

  return features['image/encoded'], label, bbox
132
133


134
def parse_record(raw_record, is_training, dtype):
135
136
137
138
139
140
141
142
143
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
144
    dtype: data type to use for images/features.
145

146
147
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
148
149
150
151
152
153
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
154
155
156
      output_height=DEFAULT_IMAGE_SIZE,
      output_width=DEFAULT_IMAGE_SIZE,
      num_channels=NUM_CHANNELS,
157
      is_training=is_training)
158
  image = tf.cast(image, dtype)
159

160
  return image, label
161
162


163
164
165
166
167
168
169
def input_fn(is_training,
             data_dir,
             batch_size,
             num_epochs=1,
             dtype=tf.float32,
             datasets_num_private_threads=None,
             parse_record_fn=parse_record,
170
             input_context=None,
171
             drop_remainder=False,
Rachel Lim's avatar
Rachel Lim committed
172
             tf_data_experimental_slack=False):
173
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
174

175
176
177
178
179
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
180
    dtype: Data type to use for images/features
Toby Boyd's avatar
Toby Boyd committed
181
    datasets_num_private_threads: Number of private threads for tf.data.
Priya Gupta's avatar
Priya Gupta committed
182
    parse_record_fn: Function to use for parsing the records.
183
184
    input_context: A `tf.distribute.InputContext` object passed in by
      `tf.distribute.Strategy`.
185
186
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
187
188
    tf_data_experimental_slack: Whether to enable tf.data's
      `experimental_slack` option.
189
190
191
192
193
194

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
195

196
  if input_context:
197
198
199
    tf.compat.v1.logging.info(
        'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d' % (
            input_context.input_pipeline_id, input_context.num_input_pipelines))
200
201
202
    dataset = dataset.shard(input_context.num_input_pipelines,
                            input_context.input_pipeline_id)

203
  if is_training:
204
205
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
206

207
  # Convert to individual records.
Haoyu Zhang's avatar
Haoyu Zhang committed
208
209
210
211
212
213
214
  # cycle_length = 10 means that up to 10 files will be read and deserialized in
  # parallel. You may want to increase this number if you have a large number of
  # CPU cores.
  dataset = dataset.interleave(
      tf.data.TFRecordDataset,
      cycle_length=10,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
215

216
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
217
218
219
220
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
Priya Gupta's avatar
Priya Gupta committed
221
      parse_record_fn=parse_record_fn,
Taylor Robie's avatar
Taylor Robie committed
222
      num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
223
224
      dtype=dtype,
      datasets_num_private_threads=datasets_num_private_threads,
225
226
      drop_remainder=drop_remainder,
      tf_data_experimental_slack=tf_data_experimental_slack,
227
  )
228
229


Toby Boyd's avatar
Toby Boyd committed
230
def get_synth_input_fn(dtype):
231
  return resnet_run_loop.get_synth_input_fn(
232
      DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS, NUM_CLASSES,
Toby Boyd's avatar
Toby Boyd committed
233
      dtype=dtype)
234
235


236
237
238
###############################################################################
# Running the model
###############################################################################
239
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
240
  """Model class with appropriate defaults for Imagenet data."""
241

242
  def __init__(self, resnet_size, data_format=None, num_classes=NUM_CLASSES,
243
               resnet_version=resnet_model.DEFAULT_VERSION,
244
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
245
246
247
248
249
250
251
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
252
        enables users to extend the same model to their own datasets.
253
254
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
255
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
256
    """
257
258
259

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
260
      bottleneck = False
261
    else:
262
      bottleneck = True
263
264
265

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
266
        bottleneck=bottleneck,
267
        num_classes=num_classes,
268
269
270
271
272
273
274
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
275
        resnet_version=resnet_version,
276
277
278
        data_format=data_format,
        dtype=dtype
    )
279
280
281


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
282
283
284
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
285
286
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
287
288
289
290
291
292
293
294
295

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
296
297
298
299
300
301
302
303
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
304
305
  }

306
307
308
309
310
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
311
               resnet_size, list(choices.keys())))
312
    raise ValueError(err)
313
314


315
316
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
317
318
319
320
321
322
323
324
325
326

  # Warmup and higher lr may not be valid for fine tuning with small batches
  # and smaller numbers of training images.
  if params['fine_tune']:
    warmup = False
    base_lr = .1
  else:
    warmup = True
    base_lr = .128

327
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
328
329
330
331
      batch_size=params['batch_size'] * params.get('num_workers', 1),
      batch_denom=256, num_images=NUM_IMAGES['train'],
      boundary_epochs=[30, 60, 80, 90], decay_rates=[1, 0.1, 0.01, 0.001, 1e-4],
      warmup=warmup, base_lr=base_lr)
332

333
334
335
336
337
338
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
pkanwar23's avatar
pkanwar23 committed
339
      weight_decay=flags.FLAGS.weight_decay,
340
341
342
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
343
      resnet_version=params['resnet_version'],
344
345
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
Zac Wellmer's avatar
Zac Wellmer committed
346
      dtype=params['dtype'],
pkanwar23's avatar
pkanwar23 committed
347
348
      fine_tune=params['fine_tune'],
      label_smoothing=flags.FLAGS.label_smoothing
349
  )
350
351


352
def define_imagenet_flags():
353
  resnet_run_loop.define_resnet_flags(
354
      resnet_size_choices=['18', '34', '50', '101', '152', '200'],
355
356
      dynamic_loss_scale=True,
      fp16_implementation=True)
357
  flags.adopt_module_key_flags(resnet_run_loop)
Toby Boyd's avatar
Toby Boyd committed
358
  flags_core.set_defaults(train_epochs=90)
359

360

361
362
363
364
365
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
366
367
368
369
370
371

  Returns:
    Dict of results of the run.  Contains the keys `eval_results` and
      `train_hooks`. `eval_results` contains accuracy (top_1) and
      accuracy_top_5. `train_hooks` is a list the instances of hooks used during
      training.
372
  """
Toby Boyd's avatar
Toby Boyd committed
373
374
375
  input_function = (flags_obj.use_synthetic_data and
                    get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
                    input_fn)
376

377
  result = resnet_run_loop.resnet_main(
378
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
379
      shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS])
380

381
382
  return result

383

384
def main(_):
385
386
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
387
388


389
if __name__ == '__main__':
390
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
391
  define_imagenet_flags()
392
  absl_app.run(main)