run_classifier.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
import os
25
26
27
28
29
30

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

31
32
33
34
35
36
37
38
# pylint: disable=g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
39
from official.utils.misc import keras_utils
40
from official.utils.misc import tpu_lib
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
58
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
59
60

common_flags.define_common_bert_flags()
61
62
63
64

FLAGS = flags.FLAGS


65
def get_loss_fn(num_classes, loss_factor=1.0):
66
67
68
69
70
71
72
73
74
75
76
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
77
    loss *= loss_factor
78
79
80
81
82
    return loss

  return classification_loss_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
85
86
87
88
89
90
91
92
93
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
94
95
                        train_input_fn,
                        eval_input_fn,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
96
                        custom_callbacks=None,
97
98
                        run_eagerly=False,
                        use_keras_compile_fit=False):
99
100
101
102
103
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  def _get_classifier_model():
104
    """Gets a classifier model."""
105
    classifier_model, core_model = (
106
107
108
109
110
111
        bert_models.classifier_model(
            bert_config,
            tf.float32,
            num_classes,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url))
112
113
    classifier_model.optimizer = optimization.create_optimizer(
        initial_lr, steps_per_epoch * epochs, warmup_steps)
114
115
116
117
118
119
120
    if FLAGS.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      classifier_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
121
          classifier_model.optimizer)
122
123
    return classifier_model, core_model

124
125
126
127
128
129
130
131
132
133
134
  # During distributed training, loss used for gradient computation is
  # summed over from all replicas. When Keras compile/fit() API is used,
  # the fit() API internally normalizes the loss by dividing the loss by
  # the number of replicas used for computation. However, when custom
  # training loop is used this is not done automatically and should be
  # done manually by the end user.
  loss_multiplier = 1.0
  if FLAGS.scale_loss and not use_keras_compile_fit:
    loss_multiplier = 1.0 / strategy.num_replicas_in_sync

  loss_fn = get_loss_fn(num_classes, loss_factor=loss_multiplier)
135
136
137
138
139
140
141

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

142
  if use_keras_compile_fit:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
144
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
145
                 'distribution strategy.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
        eval_steps,
        custom_callbacks=None)

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
162
               'distribution strategy.')
163
164
165
166
167
168
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
169
      steps_per_loop=steps_per_loop,
170
171
172
173
174
175
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
176
177
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
178
179


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
    evaluation_dataset = eval_input_fn()
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

    bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()])

206
207
208
209
210
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
    checkpoint_path = os.path.join(model_dir, 'checkpoint')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
        checkpoint_path, save_weights_only=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


228
def export_classifier(model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
229
230
                      restore_model_using_load_weights,
                      bert_config, model_dir):
231
232
233
234
235
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
236
237
238
239
240
241
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
      for custom checkpoint or to use model.load_weights() API.
      There are 2 different ways to save checkpoints. One is using
      tf.train.Checkpoint and another is using Keras model.save_weights().
      Custom training loop implementation uses tf.train.Checkpoint API
      and Keras ModelCheckpoint callback internally uses model.save_weights()
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
242
      API. Since these two API's cannot be used together, model loading logic
243
      must be take into account how model checkpoint was saved.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
244
245
246
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
247
248
249
250
251
252

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
253
254
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
255

256
257
258
  classifier_model = bert_models.classifier_model(
      bert_config, tf.float32, input_meta_data['num_labels'],
      input_meta_data['max_seq_length'])[0]
259

260
  model_saving_utils.export_bert_model(
261
262
      model_export_path,
      model=classifier_model,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
263
      checkpoint_dir=model_dir,
264
      restore_model_using_load_weights=restore_model_using_load_weights)
265
266


Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
267
def run_bert(strategy, input_meta_data, train_input_fn, eval_input_fn):
268
  """Run BERT training."""
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
269
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
270
  if FLAGS.mode == 'export_only':
271
272
273
274
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
275
276
                      FLAGS.use_keras_compile_fit,
                      bert_config, FLAGS.model_dir)
277
278
279
280
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
281
282
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
283
284
285
286
287
288
289
290
291
292

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
293
294

  trained_model = run_bert_classifier(
295
296
297
298
299
300
      strategy,
      bert_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
301
      FLAGS.steps_per_loop,
302
303
304
305
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
306
307
      train_input_fn,
      eval_input_fn,
308
309
      run_eagerly=FLAGS.run_eagerly,
      use_keras_compile_fit=FLAGS.use_keras_compile_fit)
310

311
  if FLAGS.model_export_path:
312
313
314
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
315
    model_saving_utils.export_bert_model(
316
317
318
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
319
320
  return trained_model

321
322
323
324

def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
325

326
327
328
329
330
331
332
333
334
335
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

  strategy = None
  if FLAGS.strategy_type == 'mirror':
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == 'tpu':
336
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
337
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
338
339
340
  else:
    raise ValueError('The distribution strategy type is not supported: %s' %
                     FLAGS.strategy_type)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

  max_seq_length = input_meta_data['max_seq_length']
  train_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.train_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.train_batch_size)
  eval_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.eval_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.eval_batch_size,
      is_training=False,
      drop_remainder=False)
  run_bert(strategy, input_meta_data, train_input_fn, eval_input_fn)
356
357
358
359
360


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
361
  flags.mark_flag_as_required('model_dir')
362
  app.run(main)