train_test.py 3.07 KB
Newer Older
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Tests for train.py."""

import json
import os
import random

from absl import flags
from absl import logging
from absl.testing import flagsaver
import tensorflow as tf

Dan Kondratyuk's avatar
Dan Kondratyuk committed
27
from official.projects.movinet import train as train_lib
Dan Kondratyuk's avatar
Dan Kondratyuk committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from official.vision.beta.dataloaders import tfexample_utils

FLAGS = flags.FLAGS


class TrainTest(tf.test.TestCase):

  def setUp(self):
    super(TrainTest, self).setUp()
    self._model_dir = os.path.join(self.get_temp_dir(), 'model_dir')
    tf.io.gfile.makedirs(self._model_dir)

    data_dir = os.path.join(self.get_temp_dir(), 'data')
    tf.io.gfile.makedirs(data_dir)
    self._data_path = os.path.join(data_dir, 'data.tfrecord')
    # pylint: disable=g-complex-comprehension
    examples = [
        tfexample_utils.make_video_test_example(
            image_shape=(32, 32, 3),
            audio_shape=(20, 128),
            label=random.randint(0, 100)) for _ in range(2)
    ]
    # pylint: enable=g-complex-comprehension
    tfexample_utils.dump_to_tfrecord(self._data_path, tf_examples=examples)

  def test_train_and_evaluation_pipeline_runs(self):
    saved_flag_values = flagsaver.save_flag_values()
    train_lib.tfm_flags.define_flags()
    FLAGS.mode = 'train'
    FLAGS.model_dir = self._model_dir
    FLAGS.experiment = 'movinet_kinetics600'
    logging.info('Test pipeline correctness.')
    num_frames = 4

    # Test model training pipeline runs.
    params_override = json.dumps({
64
65
66
67
        'runtime': {
            'distribution_strategy': 'mirrored',
            'mixed_precision_dtype': 'float32',
        },
Dan Kondratyuk's avatar
Dan Kondratyuk committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        'trainer': {
            'train_steps': 2,
            'validation_steps': 2,
        },
        'task': {
            'train_data': {
                'input_path': self._data_path,
                'file_type': 'tfrecord',
                'feature_shape': [num_frames, 32, 32, 3],
                'global_batch_size': 2,
            },
            'validation_data': {
                'input_path': self._data_path,
                'file_type': 'tfrecord',
                'global_batch_size': 2,
                'feature_shape': [num_frames * 2, 32, 32, 3],
            }
        }
    })
    FLAGS.params_override = params_override
    train_lib.main('unused_args')

    # Test model evaluation pipeline runs on newly produced checkpoint.
    FLAGS.mode = 'eval'
    with train_lib.gin.unlock_config():
      train_lib.main('unused_args')

    flagsaver.restore_flag_values(saved_flag_values)


if __name__ == '__main__':
  tf.test.main()