# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for train.py.""" import json import os import random from absl import flags from absl import logging from absl.testing import flagsaver import tensorflow as tf from official.projects.movinet import train as train_lib from official.vision.beta.dataloaders import tfexample_utils FLAGS = flags.FLAGS class TrainTest(tf.test.TestCase): def setUp(self): super(TrainTest, self).setUp() self._model_dir = os.path.join(self.get_temp_dir(), 'model_dir') tf.io.gfile.makedirs(self._model_dir) data_dir = os.path.join(self.get_temp_dir(), 'data') tf.io.gfile.makedirs(data_dir) self._data_path = os.path.join(data_dir, 'data.tfrecord') # pylint: disable=g-complex-comprehension examples = [ tfexample_utils.make_video_test_example( image_shape=(32, 32, 3), audio_shape=(20, 128), label=random.randint(0, 100)) for _ in range(2) ] # pylint: enable=g-complex-comprehension tfexample_utils.dump_to_tfrecord(self._data_path, tf_examples=examples) def test_train_and_evaluation_pipeline_runs(self): saved_flag_values = flagsaver.save_flag_values() train_lib.tfm_flags.define_flags() FLAGS.mode = 'train' FLAGS.model_dir = self._model_dir FLAGS.experiment = 'movinet_kinetics600' logging.info('Test pipeline correctness.') num_frames = 4 # Test model training pipeline runs. params_override = json.dumps({ 'runtime': { 'distribution_strategy': 'mirrored', 'mixed_precision_dtype': 'float32', }, 'trainer': { 'train_steps': 2, 'validation_steps': 2, }, 'task': { 'train_data': { 'input_path': self._data_path, 'file_type': 'tfrecord', 'feature_shape': [num_frames, 32, 32, 3], 'global_batch_size': 2, }, 'validation_data': { 'input_path': self._data_path, 'file_type': 'tfrecord', 'global_batch_size': 2, 'feature_shape': [num_frames * 2, 32, 32, 3], } } }) FLAGS.params_override = params_override train_lib.main('unused_args') # Test model evaluation pipeline runs on newly produced checkpoint. FLAGS.mode = 'eval' with train_lib.gin.unlock_config(): train_lib.main('unused_args') flagsaver.restore_flag_values(saved_flag_values) if __name__ == '__main__': tf.test.main()