logger_test.py 14.3 KB
Newer Older
Scott Zhu's avatar
Scott Zhu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for benchmark logger."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import tempfile
25
import time
26
import unittest
Scott Zhu's avatar
Scott Zhu committed
27

28
29
import mock
from absl.testing import flagsaver
Karmel Allison's avatar
Karmel Allison committed
30
import tensorflow as tf  # pylint: disable=g-bad-import-order
Scott Zhu's avatar
Scott Zhu committed
31

32
33
34
35
36
37
try:
  from google.cloud import bigquery
except ImportError:
  bigquery = None

from official.utils.flags import core as flags_core
38
from official.utils.logs import logger
Scott Zhu's avatar
Scott Zhu committed
39
40
41
42


class BenchmarkLoggerTest(tf.test.TestCase):

43
44
45
46
47
  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(BenchmarkLoggerTest, cls).setUpClass()
    flags_core.define_benchmark()

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
48
  def test_get_default_benchmark_logger(self):
49
50
51
    with flagsaver.flagsaver(benchmark_logger_type='foo'):
      self.assertIsInstance(logger.get_benchmark_logger(),
                            logger.BaseBenchmarkLogger)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
52
53

  def test_config_base_benchmark_logger(self):
54
55
56
57
    with flagsaver.flagsaver(benchmark_logger_type='BaseBenchmarkLogger'):
      logger.config_benchmark_logger()
      self.assertIsInstance(logger.get_benchmark_logger(),
                            logger.BaseBenchmarkLogger)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
58
59

  def test_config_benchmark_file_logger(self):
60
61
62
63
64
65
66
67
68
    # Set the benchmark_log_dir first since the benchmark_logger_type will need
    # the value to be set when it does the validation.
    with flagsaver.flagsaver(benchmark_log_dir='/tmp'):
      with flagsaver.flagsaver(benchmark_logger_type='BenchmarkFileLogger'):
        logger.config_benchmark_logger()
        self.assertIsInstance(logger.get_benchmark_logger(),
                              logger.BenchmarkFileLogger)

  @unittest.skipIf(bigquery is None, 'Bigquery dependency is not installed.')
69
70
  @mock.patch.object(bigquery, "Client")
  def test_config_benchmark_bigquery_logger(self, mock_bigquery_client):
71
72
73
74
    with flagsaver.flagsaver(benchmark_logger_type='BenchmarkBigQueryLogger'):
      logger.config_benchmark_logger()
      self.assertIsInstance(logger.get_benchmark_logger(),
                            logger.BenchmarkBigQueryLogger)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
  @mock.patch("official.utils.logs.logger.config_benchmark_logger")
  def test_benchmark_context(self, mock_config_benchmark_logger):
    mock_logger = mock.MagicMock()
    mock_config_benchmark_logger.return_value = mock_logger
    with logger.benchmark_context(None):
      tf.logging.info("start benchmarking")
    mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_SUCCESS)

  @mock.patch("official.utils.logs.logger.config_benchmark_logger")
  def test_benchmark_context_failure(self, mock_config_benchmark_logger):
    mock_logger = mock.MagicMock()
    mock_config_benchmark_logger.return_value = mock_logger
    with self.assertRaises(RuntimeError):
      with logger.benchmark_context(None):
        raise RuntimeError("training error")
    mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_FAILURE)

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

class BaseBenchmarkLoggerTest(tf.test.TestCase):

  def setUp(self):
    super(BaseBenchmarkLoggerTest, self).setUp()
    self._actual_log = tf.logging.info
    self.logged_message = None

    def mock_log(*args, **kwargs):
      self.logged_message = args
      self._actual_log(*args, **kwargs)

    tf.logging.info = mock_log

  def tearDown(self):
    super(BaseBenchmarkLoggerTest, self).tearDown()
    tf.logging.info = self._actual_log

  def test_log_metric(self):
    log = logger.BaseBenchmarkLogger()
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})

    expected_log_prefix = "Benchmark metric:"
    self.assertRegexpMatches(str(self.logged_message), expected_log_prefix)


class BenchmarkFileLoggerTest(tf.test.TestCase):

121
  def setUp(self):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
122
    super(BenchmarkFileLoggerTest, self).setUp()
123
124
125
126
127
128
    # Avoid pulling extra env vars from test environment which affects the test
    # result, eg. Kokoro test has a TF_PKG env which affect the test case
    # test_collect_tensorflow_environment_variables()
    self.original_environ = dict(os.environ)
    os.environ.clear()

Scott Zhu's avatar
Scott Zhu committed
129
  def tearDown(self):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
130
    super(BenchmarkFileLoggerTest, self).tearDown()
Scott Zhu's avatar
Scott Zhu committed
131
    tf.gfile.DeleteRecursively(self.get_temp_dir())
132
133
    os.environ.clear()
    os.environ.update(self.original_environ)
Scott Zhu's avatar
Scott Zhu committed
134
135
136
137
138

  def test_create_logging_dir(self):
    non_exist_temp_dir = os.path.join(self.get_temp_dir(), "unknown_dir")
    self.assertFalse(tf.gfile.IsDirectory(non_exist_temp_dir))

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
139
    logger.BenchmarkFileLogger(non_exist_temp_dir)
Scott Zhu's avatar
Scott Zhu committed
140
141
142
143
    self.assertTrue(tf.gfile.IsDirectory(non_exist_temp_dir))

  def test_log_metric(self):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
144
    log = logger.BenchmarkFileLogger(log_dir)
Scott Zhu's avatar
Scott Zhu committed
145
146
147
148
149
150
151
152
153
154
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertTrue(tf.gfile.Exists(metric_log))
    with tf.gfile.GFile(metric_log) as f:
      metric = json.loads(f.readline())
      self.assertEqual(metric["name"], "accuracy")
      self.assertEqual(metric["value"], 0.999)
      self.assertEqual(metric["unit"], None)
      self.assertEqual(metric["global_step"], 1e4)
155
      self.assertEqual(metric["extras"], [{"name": "name", "value": "value"}])
Scott Zhu's avatar
Scott Zhu committed
156
157
158

  def test_log_multiple_metrics(self):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
159
    log = logger.BenchmarkFileLogger(log_dir)
Scott Zhu's avatar
Scott Zhu committed
160
161
162
163
164
165
166
167
168
169
170
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})
    log.log_metric("loss", 0.02, global_step=1e4)

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertTrue(tf.gfile.Exists(metric_log))
    with tf.gfile.GFile(metric_log) as f:
      accuracy = json.loads(f.readline())
      self.assertEqual(accuracy["name"], "accuracy")
      self.assertEqual(accuracy["value"], 0.999)
      self.assertEqual(accuracy["unit"], None)
      self.assertEqual(accuracy["global_step"], 1e4)
171
      self.assertEqual(accuracy["extras"], [{"name": "name", "value": "value"}])
Scott Zhu's avatar
Scott Zhu committed
172
173
174
175
176
177

      loss = json.loads(f.readline())
      self.assertEqual(loss["name"], "loss")
      self.assertEqual(loss["value"], 0.02)
      self.assertEqual(loss["unit"], None)
      self.assertEqual(loss["global_step"], 1e4)
178
      self.assertEqual(loss["extras"], [])
Scott Zhu's avatar
Scott Zhu committed
179

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
180
  def test_log_non_number_value(self):
Scott Zhu's avatar
Scott Zhu committed
181
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
182
    log = logger.BenchmarkFileLogger(log_dir)
Scott Zhu's avatar
Scott Zhu committed
183
184
185
186
187
188
    const = tf.constant(1)
    log.log_metric("accuracy", const)

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertFalse(tf.gfile.Exists(metric_log))

189
  def test_log_evaluation_result(self):
190
191
192
    eval_result = {"loss": 0.46237424,
                   "global_step": 207082,
                   "accuracy": 0.9285}
193
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
194
195
    log = logger.BenchmarkFileLogger(log_dir)
    log.log_evaluation_result(eval_result)
196
197
198
199
200
201
202
203
204
205

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertTrue(tf.gfile.Exists(metric_log))
    with tf.gfile.GFile(metric_log) as f:
      accuracy = json.loads(f.readline())
      self.assertEqual(accuracy["name"], "accuracy")
      self.assertEqual(accuracy["value"], 0.9285)
      self.assertEqual(accuracy["unit"], None)
      self.assertEqual(accuracy["global_step"], 207082)

206
207
208
209
210
211
      loss = json.loads(f.readline())
      self.assertEqual(loss["name"], "loss")
      self.assertEqual(loss["value"], 0.46237424)
      self.assertEqual(loss["unit"], None)
      self.assertEqual(loss["global_step"], 207082)

212
213
214
  def test_log_evaluation_result_with_invalid_type(self):
    eval_result = "{'loss': 0.46237424, 'global_step': 207082}"
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
215
216
    log = logger.BenchmarkFileLogger(log_dir)
    log.log_evaluation_result(eval_result)
217
218
219
220

    metric_log = os.path.join(log_dir, "metric.log")
    self.assertFalse(tf.gfile.Exists(metric_log))

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
  @mock.patch("official.utils.logs.logger._gather_run_info")
  def test_log_run_info(self, mock_gather_run_info):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    log = logger.BenchmarkFileLogger(log_dir)
    run_info = {"model_name": "model_name",
                "dataset": "dataset_name",
                "run_info": "run_value"}
    mock_gather_run_info.return_value = run_info
    log.log_run_info("model_name", "dataset_name", {})

    run_log = os.path.join(log_dir, "benchmark_run.log")
    self.assertTrue(tf.gfile.Exists(run_log))
    with tf.gfile.GFile(run_log) as f:
      run_info = json.loads(f.readline())
      self.assertEqual(run_info["model_name"], "model_name")
      self.assertEqual(run_info["dataset"], "dataset_name")
      self.assertEqual(run_info["run_info"], "run_value")

239
240
241
242
243
244
245
  def test_collect_tensorflow_info(self):
    run_info = {}
    logger._collect_tensorflow_info(run_info)
    self.assertNotEqual(run_info["tensorflow_version"], {})
    self.assertEqual(run_info["tensorflow_version"]["version"], tf.VERSION)
    self.assertEqual(run_info["tensorflow_version"]["git_hash"], tf.GIT_VERSION)

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  def test_collect_run_params(self):
    run_info = {}
    run_parameters = {
        "batch_size": 32,
        "synthetic_data": True,
        "train_epochs": 100.00,
        "dtype": "fp16",
        "resnet_size": 50,
        "random_tensor": tf.constant(2.0)
    }
    logger._collect_run_params(run_info, run_parameters)
    self.assertEqual(len(run_info["run_parameters"]), 6)
    self.assertEqual(run_info["run_parameters"][0],
                     {"name": "batch_size", "long_value": 32})
    self.assertEqual(run_info["run_parameters"][1],
                     {"name": "dtype", "string_value": "fp16"})
    self.assertEqual(run_info["run_parameters"][2],
                     {"name": "random_tensor", "string_value":
                          "Tensor(\"Const:0\", shape=(), dtype=float32)"})
    self.assertEqual(run_info["run_parameters"][3],
                     {"name": "resnet_size", "long_value": 50})
    self.assertEqual(run_info["run_parameters"][4],
                     {"name": "synthetic_data", "bool_value": "True"})
    self.assertEqual(run_info["run_parameters"][5],
                     {"name": "train_epochs", "float_value": 100.00})

272
273
  def test_collect_tensorflow_environment_variables(self):
    os.environ["TF_ENABLE_WINOGRAD_NONFUSED"] = "1"
274
275
    os.environ["TF_OTHER"] = "2"
    os.environ["OTHER"] = "3"
276
277
278
279

    run_info = {}
    logger._collect_tensorflow_environment_variables(run_info)
    self.assertIsNotNone(run_info["tensorflow_environment_variables"])
280
281
282
283
284
285
    expected_tf_envs = [
        {"name": "TF_ENABLE_WINOGRAD_NONFUSED", "value": "1"},
        {"name": "TF_OTHER", "value": "2"},
    ]
    self.assertEqual(run_info["tensorflow_environment_variables"],
                     expected_tf_envs)
286
287
288

  @unittest.skipUnless(tf.test.is_built_with_cuda(), "requires GPU")
  def test_collect_gpu_info(self):
289
    run_info = {"machine_config": {}}
290
    logger._collect_gpu_info(run_info)
291
    self.assertNotEqual(run_info["machine_config"]["gpu_info"], {})
292
293

  def test_collect_memory_info(self):
294
    run_info = {"machine_config": {}}
295
    logger._collect_memory_info(run_info)
296
297
    self.assertIsNotNone(run_info["machine_config"]["memory_total"])
    self.assertIsNotNone(run_info["machine_config"]["memory_available"])
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312

@unittest.skipIf(bigquery is None, 'Bigquery dependency is not installed.')
class BenchmarkBigQueryLoggerTest(tf.test.TestCase):

  def setUp(self):
    super(BenchmarkBigQueryLoggerTest, self).setUp()
    # Avoid pulling extra env vars from test environment which affects the test
    # result, eg. Kokoro test has a TF_PKG env which affect the test case
    # test_collect_tensorflow_environment_variables()
    self.original_environ = dict(os.environ)
    os.environ.clear()

    self.mock_bq_uploader = mock.MagicMock()
    self.logger = logger.BenchmarkBigQueryLogger(
313
314
        self.mock_bq_uploader, "dataset", "run_table", "run_status_table",
        "metric_table", "run_id")
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

  def tearDown(self):
    super(BenchmarkBigQueryLoggerTest, self).tearDown()
    tf.gfile.DeleteRecursively(self.get_temp_dir())
    os.environ.clear()
    os.environ.update(self.original_environ)

  def test_log_metric(self):
    self.logger.log_metric(
        "accuracy", 0.999, global_step=1e4, extras={"name": "value"})
    expected_metric_json = [{
        "name": "accuracy",
        "value": 0.999,
        "unit": None,
        "global_step": 1e4,
        "timestamp": mock.ANY,
        "extras": [{"name": "name", "value": "value"}]
    }]
    # log_metric will call upload_benchmark_metric_json in a separate thread.
    # Give it some grace period for the new thread before assert.
    time.sleep(1)
    self.mock_bq_uploader.upload_benchmark_metric_json.assert_called_once_with(
        "dataset", "metric_table", "run_id", expected_metric_json)

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
  @mock.patch("official.utils.logs.logger._gather_run_info")
  def test_log_run_info(self, mock_gather_run_info):
    run_info = {"model_name": "model_name",
                "dataset": "dataset_name",
                "run_info": "run_value"}
    mock_gather_run_info.return_value = run_info
    self.logger.log_run_info("model_name", "dataset_name", {})
    # log_metric will call upload_benchmark_metric_json in a separate thread.
    # Give it some grace period for the new thread before assert.
    time.sleep(1)
    self.mock_bq_uploader.upload_benchmark_run_json.assert_called_once_with(
        "dataset", "run_table", "run_id", run_info)
    self.mock_bq_uploader.insert_run_status.assert_called_once_with(
        "dataset", "run_status_table", "run_id", "running")

  def test_on_finish(self):
    self.logger.on_finish(logger.RUN_STATUS_SUCCESS)
    # log_metric will call upload_benchmark_metric_json in a separate thread.
    # Give it some grace period for the new thread before assert.
    time.sleep(1)
    self.mock_bq_uploader.update_run_status.assert_called_once_with(
        "dataset", "run_status_table", "run_id", logger.RUN_STATUS_SUCCESS)

362

Scott Zhu's avatar
Scott Zhu committed
363
364
if __name__ == "__main__":
  tf.test.main()