"docs/en/user_guides/inference.md" did not exist on "f0e485bdef718f35c86fe1f8ce1262a2342541f4"
run_classifier.py 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""BERT classification finetuning runner in TF 2.x."""
16
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import os
23
24
25
26
27
28

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

29
from official.modeling import model_training_utils
30
from official.modeling import performance
31
from official.nlp import optimization
32
from official.nlp.bert import bert_models
33
from official.nlp.bert import common_flags
34
from official.nlp.bert import configs as bert_configs
35
36
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
57
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
58
59

common_flags.define_common_bert_flags()
60
61
62
63

FLAGS = flags.FLAGS


64
def get_loss_fn(num_classes, loss_factor=1.0):
65
66
67
68
69
70
71
72
73
74
75
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
76
    loss *= loss_factor
77
78
79
80
81
    return loss

  return classification_loss_fn


Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
        input_file_pattern,
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
102
103
104
105
106
107
108
109
110
111
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
112
113
                        train_input_fn,
                        eval_input_fn,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
                        custom_callbacks=None,
115
116
                        run_eagerly=False,
                        use_keras_compile_fit=False):
117
118
119
120
121
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  def _get_classifier_model():
122
    """Gets a classifier model."""
123
    classifier_model, core_model = (
124
125
126
127
        bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
129
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
130
    optimizer = optimization.create_optimizer(
131
        initial_lr, steps_per_epoch * epochs, warmup_steps)
132
133
134
135
    classifier_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
136
137
    return classifier_model, core_model

138
139
140
141
142
143
144
145
146
147
148
  # During distributed training, loss used for gradient computation is
  # summed over from all replicas. When Keras compile/fit() API is used,
  # the fit() API internally normalizes the loss by dividing the loss by
  # the number of replicas used for computation. However, when custom
  # training loop is used this is not done automatically and should be
  # done manually by the end user.
  loss_multiplier = 1.0
  if FLAGS.scale_loss and not use_keras_compile_fit:
    loss_multiplier = 1.0 / strategy.num_replicas_in_sync

  loss_fn = get_loss_fn(num_classes, loss_factor=loss_multiplier)
149
150
151
152
153
154
155

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

156
  if use_keras_compile_fit:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
157
158
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
159
                 'distribution strategy.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
160
161
162
163
164
165
166
167
168
169
170
171
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
        eval_steps,
172
        custom_callbacks=custom_callbacks)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
173
174
175

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
176
               'distribution strategy.')
177
178
179
180
181
182
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
183
      steps_per_loop=steps_per_loop,
184
185
186
187
188
189
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
190
191
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
192
193


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
    evaluation_dataset = eval_input_fn()
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

    bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()])

220
221
222
223
224
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
    checkpoint_path = os.path.join(model_dir, 'checkpoint')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
        checkpoint_path, save_weights_only=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def get_predictions_and_labels(strategy, trained_model, eval_input_fn,
                               eval_steps):
  """Obtains predictions of trained model on evaluation data.

  Note that list of labels is returned along with the predictions because the
  order changes on distributing dataset over TPU pods.

  Args:
    strategy: Distribution strategy.
    trained_model: Trained model with preloaded weights.
    eval_input_fn: Input function for evaluation data.
    eval_steps: Number of evaluation steps.

  Returns:
    predictions: List of predictions.
    labels: List of gold labels corresponding to predictions.
  """

  @tf.function
  def test_step(iterator):
    """Computes predictions on distributed devices."""

    def _test_step_fn(inputs):
      """Replicated predictions."""
      inputs, labels = inputs
      model_outputs = trained_model(inputs, training=False)
      return model_outputs, labels

    outputs, labels = strategy.experimental_run_v2(
        _test_step_fn, args=(next(iterator),))
    # outputs: current batch logits as a tuple of shard logits
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    outputs)
    labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
    return outputs, labels

  def _run_evaluation(test_iterator):
    """Runs evaluation steps."""
    preds, golds = list(), list()
    for _ in range(eval_steps):
      logits, labels = test_step(test_iterator)
      for cur_logits, cur_labels in zip(logits, labels):
        preds.extend(tf.math.argmax(cur_logits, axis=1).numpy())
        golds.extend(cur_labels.numpy().tolist())
    return preds, golds

  test_iter = iter(
      strategy.experimental_distribute_datasets_from_function(eval_input_fn))
  predictions, labels = _run_evaluation(test_iter)

  return predictions, labels


295
def export_classifier(model_export_path, input_meta_data,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
296
                      restore_model_using_load_weights, bert_config, model_dir):
297
298
299
300
301
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
302
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
303
304
305
306
307
308
309
      for custom checkpoint or to use model.load_weights() API. There are 2
      different ways to save checkpoints. One is using tf.train.Checkpoint and
      another is using Keras model.save_weights(). Custom training loop
      implementation uses tf.train.Checkpoint API and Keras ModelCheckpoint
      callback internally uses model.save_weights() API. Since these two API's
      cannot be used together, model loading logic must be take into account how
      model checkpoint was saved.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
310
311
312
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
313
314
315
316
317
318

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
319
320
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
321

Zongwei Zhou's avatar
Zongwei Zhou committed
322
323
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
324
  classifier_model = bert_models.classifier_model(
Zongwei Zhou's avatar
Zongwei Zhou committed
325
      bert_config, input_meta_data['num_labels'],
326
      input_meta_data['max_seq_length'])[0]
327

328
  model_saving_utils.export_bert_model(
329
330
      model_export_path,
      model=classifier_model,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
331
      checkpoint_dir=model_dir,
332
      restore_model_using_load_weights=restore_model_using_load_weights)
333
334


Hongkun Yu's avatar
Hongkun Yu committed
335
336
def run_bert(strategy,
             input_meta_data,
337
             model_config,
Hongkun Yu's avatar
Hongkun Yu committed
338
339
             train_input_fn=None,
             eval_input_fn=None):
340
341
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
342
343
344
345
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
346
                      FLAGS.use_keras_compile_fit,
347
                      model_config, FLAGS.model_dir)
348
349
350
351
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
352
353
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
354
  performance.set_mixed_precision_policy(common_flags.dtype())
355
356
357
358
359
360
361
362
363
364

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
365

366
367
368
369
370
371
372
373
374
  if FLAGS.log_steps:
    custom_callbacks = [keras_utils.TimeHistory(
        batch_size=FLAGS.train_batch_size,
        log_steps=FLAGS.log_steps,
        logdir=FLAGS.model_dir,
    )]
  else:
    custom_callbacks = None

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
375
  trained_model = run_bert_classifier(
376
      strategy,
377
      model_config,
378
379
380
381
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
382
      FLAGS.steps_per_loop,
383
384
385
386
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
387
388
      train_input_fn,
      eval_input_fn,
389
      run_eagerly=FLAGS.run_eagerly,
390
391
      use_keras_compile_fit=FLAGS.use_keras_compile_fit,
      custom_callbacks=custom_callbacks)
392

393
  if FLAGS.model_export_path:
394
395
396
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
397
    model_saving_utils.export_bert_model(
398
399
400
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
401
402
  return trained_model

403
404
405

def main(_):
  # Users should always run this script under TF 2.x
406

407
408
409
410
411
412
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

413
414
415
416
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
417
  max_seq_length = input_meta_data['max_seq_length']
Hongkun Yu's avatar
Hongkun Yu committed
418
  train_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
419
      FLAGS.train_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
420
421
422
423
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
424
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
425
426
427
428
      max_seq_length,
      FLAGS.eval_batch_size,
      is_training=False)

429
430
431
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  run_bert(strategy, input_meta_data, bert_config, train_input_fn,
           eval_input_fn)
432
433
434
435
436


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
437
  flags.mark_flag_as_required('model_dir')
438
  app.run(main)