run_squad.py 14.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run BERT on SQuAD 1.1 and SQuAD 2.0 in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

29
30
31
32
33
34
35
36
37
38
# pylint: disable=unused-import,g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
from official.nlp.bert import squad_lib
from official.nlp.bert import tokenization
39
from official.utils.misc import distribution_utils
40
from official.utils.misc import keras_utils
41
from official.utils.misc import tpu_lib
42

Hongkun Yu's avatar
Hongkun Yu committed
43
flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
44
45
46
47
48
    'mode', 'train_and_predict',
    ['train_and_predict', 'train', 'predict', 'export_only'],
    'One of {"train_and_predict", "train", "predict", "export_only"}. '
    '`train_and_predict`: both train and predict to a json file. '
    '`train`: only trains the model. '
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
    '`predict`: predict answers from the squad json file. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
flags.DEFINE_string('train_data_path', '',
                    'Training data path with train tfrecords.')
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
# Model training specific flags.
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
# Predict processing related.
flags.DEFINE_string('predict_file', None,
                    'Prediction data path with train tfrecords.')
flags.DEFINE_string('vocab_file', None,
                    'The vocabulary file that the BERT model was trained on.')
flags.DEFINE_bool(
    'do_lower_case', True,
    'Whether to lower case the input text. Should be True for uncased '
    'models and False for cased models.')
flags.DEFINE_bool(
    'verbose_logging', False,
    'If true, all of the warnings related to data processing will be printed. '
    'A number of warnings are expected for a normal SQuAD evaluation.')
flags.DEFINE_integer('predict_batch_size', 8,
                     'Total batch size for prediction.')
flags.DEFINE_integer(
    'n_best_size', 20,
    'The total number of n-best predictions to generate in the '
    'nbest_predictions.json output file.')
flags.DEFINE_integer(
    'max_answer_length', 30,
    'The maximum length of an answer that can be generated. This is needed '
    'because the start and end predictions are not conditioned on one another.')

84
85
common_flags.define_common_bert_flags()

86
87
88
89
90
91
92
FLAGS = flags.FLAGS


def squad_loss_fn(start_positions,
                  end_positions,
                  start_logits,
                  end_logits,
93
                  loss_factor=1.0):
94
95
96
97
98
99
100
  """Returns sparse categorical crossentropy for start/end logits."""
  start_loss = tf.keras.backend.sparse_categorical_crossentropy(
      start_positions, start_logits, from_logits=True)
  end_loss = tf.keras.backend.sparse_categorical_crossentropy(
      end_positions, end_logits, from_logits=True)

  total_loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
101
  total_loss *= loss_factor
102
103
104
  return total_loss


105
def get_loss_fn(loss_factor=1.0):
106
107
108
109
110
  """Gets a loss function for squad task."""

  def _loss_fn(labels, model_outputs):
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
111
    start_logits, end_logits = model_outputs
112
113
114
115
116
    return squad_loss_fn(
        start_positions,
        end_positions,
        start_logits,
        end_logits,
117
        loss_factor=loss_factor)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

  return _loss_fn


def get_raw_results(predictions):
  """Converts multi-replica predictions to RawResult."""
  for unique_ids, start_logits, end_logits in zip(predictions['unique_ids'],
                                                  predictions['start_logits'],
                                                  predictions['end_logits']):
    for values in zip(unique_ids.numpy(), start_logits.numpy(),
                      end_logits.numpy()):
      yield squad_lib.RawResult(
          unique_id=values[0],
          start_logits=values[1].tolist(),
          end_logits=values[2].tolist())


Hongkun Yu's avatar
Hongkun Yu committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset.."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_squad_dataset(
        input_file_pattern,
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


154
155
156
def predict_squad_customized(strategy, input_meta_data, bert_config,
                             predict_tfrecord_path, num_steps):
  """Make predictions using a Bert-based squad model."""
Hongkun Yu's avatar
Hongkun Yu committed
157
  predict_dataset_fn = get_dataset_fn(
158
159
160
161
162
      predict_tfrecord_path,
      input_meta_data['max_seq_length'],
      FLAGS.predict_batch_size,
      is_training=False)
  predict_iterator = iter(
Hongkun Yu's avatar
Hongkun Yu committed
163
164
      strategy.experimental_distribute_datasets_from_function(
          predict_dataset_fn))
165
166
167
168
169

  with strategy.scope():
    # Prediction always uses float32, even if training uses mixed precision.
    tf.keras.mixed_precision.experimental.set_policy('float32')
    squad_model, _ = bert_models.squad_model(
Hongkun Yu's avatar
Hongkun Yu committed
170
171
        bert_config,
        input_meta_data['max_seq_length'],
Chen Chen's avatar
Chen Chen committed
172
        float_type=tf.float32)
173
174
175
176
177
178
179
180
181
182
183
184
185

  checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir)
  logging.info('Restoring checkpoints from %s', checkpoint_path)
  checkpoint = tf.train.Checkpoint(model=squad_model)
  checkpoint.restore(checkpoint_path).expect_partial()

  @tf.function
  def predict_step(iterator):
    """Predicts on distributed devices."""

    def _replicated_step(inputs):
      """Replicated prediction calculation."""
      x, _ = inputs
186
187
      unique_ids = x.pop('unique_ids')
      start_logits, end_logits = squad_model(x, training=False)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
      return dict(
          unique_ids=unique_ids,
          start_logits=start_logits,
          end_logits=end_logits)

    outputs = strategy.experimental_run_v2(
        _replicated_step, args=(next(iterator),))
    return tf.nest.map_structure(strategy.experimental_local_results, outputs)

  all_results = []
  for _ in range(num_steps):
    predictions = predict_step(predict_iterator)
    for result in get_raw_results(predictions):
      all_results.append(result)
    if len(all_results) % 100 == 0:
      logging.info('Made predictions for %d records.', len(all_results))
  return all_results
205
206


207
208
209
210
def train_squad(strategy,
                input_meta_data,
                custom_callbacks=None,
                run_eagerly=False):
211
  """Run bert squad training."""
212
213
214
  if strategy:
    logging.info('Training using customized training loop with distribution'
                 ' strategy.')
215
216
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
217

218
219
  use_float16 = common_flags.use_float16()
  if use_float16:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
    tf.keras.mixed_precision.experimental.set_policy('mixed_float16')
221

222
223
224
225
226
227
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  epochs = FLAGS.num_train_epochs
  num_train_examples = input_meta_data['train_data_size']
  max_seq_length = input_meta_data['max_seq_length']
  steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
  warmup_steps = int(epochs * num_train_examples * 0.1 / FLAGS.train_batch_size)
Hongkun Yu's avatar
Hongkun Yu committed
228
  train_input_fn = get_dataset_fn(
229
230
231
232
233
234
      FLAGS.train_data_path,
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)

  def _get_squad_model():
235
    """Get Squad model and optimizer."""
236
    squad_model, core_model = bert_models.squad_model(
237
238
        bert_config,
        max_seq_length,
Hongkun Yu's avatar
Hongkun Yu committed
239
        float_type=tf.float16 if use_float16 else tf.float32,
Chen Chen's avatar
Chen Chen committed
240
        hub_module_url=FLAGS.hub_module_url)
241
242
    squad_model.optimizer = optimization.create_optimizer(
        FLAGS.learning_rate, steps_per_epoch * epochs, warmup_steps)
243
    if use_float16:
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
244
245
246
      # Wraps optimizer with a LossScaleOptimizer. This is done automatically
      # in compile() with the "mixed_float16" policy, but since we do not call
      # compile(), we must wrap the optimizer manually.
247
248
249
      squad_model.optimizer = (
          tf.keras.mixed_precision.experimental.LossScaleOptimizer(
              squad_model.optimizer, loss_scale=common_flags.get_loss_scale()))
250
251
252
253
254
255
256
    if FLAGS.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      squad_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
257
          squad_model.optimizer)
258
259
260
261
262
263
    return squad_model, core_model

  # The original BERT model does not scale the loss by
  # 1/num_replicas_in_sync. It could be an accident. So, in order to use
  # the same hyper parameter, we do the same thing here by keeping each
  # replica loss as it is.
264
265
266
  loss_fn = get_loss_fn(
      loss_factor=1.0 /
      strategy.num_replicas_in_sync if FLAGS.scale_loss else 1.0)
267
268
269
270
271
272
273

  model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_squad_model,
      loss_fn=loss_fn,
      model_dir=FLAGS.model_dir,
      steps_per_epoch=steps_per_epoch,
274
      steps_per_loop=FLAGS.steps_per_loop,
275
276
277
      epochs=epochs,
      train_input_fn=train_input_fn,
      init_checkpoint=FLAGS.init_checkpoint,
278
      run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
279
      custom_callbacks=custom_callbacks)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348


def predict_squad(strategy, input_meta_data):
  """Makes predictions for a squad dataset."""
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  doc_stride = input_meta_data['doc_stride']
  max_query_length = input_meta_data['max_query_length']
  # Whether data should be in Ver 2.0 format.
  version_2_with_negative = input_meta_data.get('version_2_with_negative',
                                                False)
  eval_examples = squad_lib.read_squad_examples(
      input_file=FLAGS.predict_file,
      is_training=False,
      version_2_with_negative=version_2_with_negative)

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  eval_writer = squad_lib.FeatureWriter(
      filename=os.path.join(FLAGS.model_dir, 'eval.tf_record'),
      is_training=False)
  eval_features = []

  def _append_feature(feature, is_padding):
    if not is_padding:
      eval_features.append(feature)
    eval_writer.process_feature(feature)

  # TPU requires a fixed batch size for all batches, therefore the number
  # of examples must be a multiple of the batch size, or else examples
  # will get dropped. So we pad with fake examples which are ignored
  # later on.
  dataset_size = squad_lib.convert_examples_to_features(
      examples=eval_examples,
      tokenizer=tokenizer,
      max_seq_length=input_meta_data['max_seq_length'],
      doc_stride=doc_stride,
      max_query_length=max_query_length,
      is_training=False,
      output_fn=_append_feature,
      batch_size=FLAGS.predict_batch_size)
  eval_writer.close()

  logging.info('***** Running predictions *****')
  logging.info('  Num orig examples = %d', len(eval_examples))
  logging.info('  Num split examples = %d', len(eval_features))
  logging.info('  Batch size = %d', FLAGS.predict_batch_size)

  num_steps = int(dataset_size / FLAGS.predict_batch_size)
  all_results = predict_squad_customized(strategy, input_meta_data, bert_config,
                                         eval_writer.filename, num_steps)

  output_prediction_file = os.path.join(FLAGS.model_dir, 'predictions.json')
  output_nbest_file = os.path.join(FLAGS.model_dir, 'nbest_predictions.json')
  output_null_log_odds_file = os.path.join(FLAGS.model_dir, 'null_odds.json')

  squad_lib.write_predictions(
      eval_examples,
      eval_features,
      all_results,
      FLAGS.n_best_size,
      FLAGS.max_answer_length,
      FLAGS.do_lower_case,
      output_prediction_file,
      output_nbest_file,
      output_null_log_odds_file,
      verbose=FLAGS.verbose_logging)


Hongkun Yu's avatar
Hongkun Yu committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  squad_model, _ = bert_models.squad_model(
Hongkun Yu's avatar
Hongkun Yu committed
364
365
      bert_config,
      input_meta_data['max_seq_length'],
Chen Chen's avatar
Chen Chen committed
366
      float_type=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
367
368
369
370
  model_saving_utils.export_bert_model(
      model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)


371
372
373
def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
374

375
376
377
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

Hongkun Yu's avatar
Hongkun Yu committed
378
379
380
381
  if FLAGS.mode == 'export_only':
    export_squad(FLAGS.model_export_path, input_meta_data)
    return

382
383
384
385
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Hongkun Yu's avatar
Hongkun Yu committed
386
  if FLAGS.mode in ('train', 'train_and_predict'):
387
    train_squad(strategy, input_meta_data)
Hongkun Yu's avatar
Hongkun Yu committed
388
  if FLAGS.mode in ('predict', 'train_and_predict'):
389
390
391
392
393
394
395
    predict_squad(strategy, input_meta_data)


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('model_dir')
  app.run(main)