run_squad.py 14.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run BERT on SQuAD 1.1 and SQuAD 2.0 in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import json
import os

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

30
31
32
33
34
35
36
37
38
39
# pylint: disable=unused-import,g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
from official.nlp.bert import squad_lib
from official.nlp.bert import tokenization
40
from official.utils.misc import keras_utils
41
from official.utils.misc import tpu_lib
42

Hongkun Yu's avatar
Hongkun Yu committed
43
flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
44
45
46
47
48
    'mode', 'train_and_predict',
    ['train_and_predict', 'train', 'predict', 'export_only'],
    'One of {"train_and_predict", "train", "predict", "export_only"}. '
    '`train_and_predict`: both train and predict to a json file. '
    '`train`: only trains the model. '
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
    '`predict`: predict answers from the squad json file. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
flags.DEFINE_string('train_data_path', '',
                    'Training data path with train tfrecords.')
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
# Model training specific flags.
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
# Predict processing related.
flags.DEFINE_string('predict_file', None,
                    'Prediction data path with train tfrecords.')
flags.DEFINE_string('vocab_file', None,
                    'The vocabulary file that the BERT model was trained on.')
flags.DEFINE_bool(
    'do_lower_case', True,
    'Whether to lower case the input text. Should be True for uncased '
    'models and False for cased models.')
flags.DEFINE_bool(
    'verbose_logging', False,
    'If true, all of the warnings related to data processing will be printed. '
    'A number of warnings are expected for a normal SQuAD evaluation.')
flags.DEFINE_integer('predict_batch_size', 8,
                     'Total batch size for prediction.')
flags.DEFINE_integer(
    'n_best_size', 20,
    'The total number of n-best predictions to generate in the '
    'nbest_predictions.json output file.')
flags.DEFINE_integer(
    'max_answer_length', 30,
    'The maximum length of an answer that can be generated. This is needed '
    'because the start and end predictions are not conditioned on one another.')
83
flags.DEFINE_bool(
Hongkun Yu's avatar
Hongkun Yu committed
84
    'use_keras_bert_for_squad', False, 'Whether to use keras BERT for squad '
85
86
    'task. Note that when the FLAG "hub_module_url" is specified, '
    '"use_keras_bert_for_squad" cannot be True.')
87

88
89
common_flags.define_common_bert_flags()

90
91
92
93
94
95
96
FLAGS = flags.FLAGS


def squad_loss_fn(start_positions,
                  end_positions,
                  start_logits,
                  end_logits,
97
                  loss_factor=1.0):
98
99
100
101
102
103
104
  """Returns sparse categorical crossentropy for start/end logits."""
  start_loss = tf.keras.backend.sparse_categorical_crossentropy(
      start_positions, start_logits, from_logits=True)
  end_loss = tf.keras.backend.sparse_categorical_crossentropy(
      end_positions, end_logits, from_logits=True)

  total_loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
105
  total_loss *= loss_factor
106
107
108
  return total_loss


109
def get_loss_fn(loss_factor=1.0):
110
111
112
113
114
  """Gets a loss function for squad task."""

  def _loss_fn(labels, model_outputs):
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
115
    start_logits, end_logits = model_outputs
116
117
118
119
120
    return squad_loss_fn(
        start_positions,
        end_positions,
        start_logits,
        end_logits,
121
        loss_factor=loss_factor)
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

  return _loss_fn


def get_raw_results(predictions):
  """Converts multi-replica predictions to RawResult."""
  for unique_ids, start_logits, end_logits in zip(predictions['unique_ids'],
                                                  predictions['start_logits'],
                                                  predictions['end_logits']):
    for values in zip(unique_ids.numpy(), start_logits.numpy(),
                      end_logits.numpy()):
      yield squad_lib.RawResult(
          unique_id=values[0],
          start_logits=values[1].tolist(),
          end_logits=values[2].tolist())


def predict_squad_customized(strategy, input_meta_data, bert_config,
                             predict_tfrecord_path, num_steps):
  """Make predictions using a Bert-based squad model."""
142
143
144
145
146
147
148
149
150
151
152
153
  predict_dataset = input_pipeline.create_squad_dataset(
      predict_tfrecord_path,
      input_meta_data['max_seq_length'],
      FLAGS.predict_batch_size,
      is_training=False)
  predict_iterator = iter(
      strategy.experimental_distribute_dataset(predict_dataset))

  with strategy.scope():
    # Prediction always uses float32, even if training uses mixed precision.
    tf.keras.mixed_precision.experimental.set_policy('float32')
    squad_model, _ = bert_models.squad_model(
154
155
        bert_config, input_meta_data['max_seq_length'], float_type=tf.float32,
        use_keras_bert=FLAGS.use_keras_bert_for_squad)
156
157
158
159
160
161
162
163
164
165
166
167
168

  checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir)
  logging.info('Restoring checkpoints from %s', checkpoint_path)
  checkpoint = tf.train.Checkpoint(model=squad_model)
  checkpoint.restore(checkpoint_path).expect_partial()

  @tf.function
  def predict_step(iterator):
    """Predicts on distributed devices."""

    def _replicated_step(inputs):
      """Replicated prediction calculation."""
      x, _ = inputs
169
170
      unique_ids = x.pop('unique_ids')
      start_logits, end_logits = squad_model(x, training=False)
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
      return dict(
          unique_ids=unique_ids,
          start_logits=start_logits,
          end_logits=end_logits)

    outputs = strategy.experimental_run_v2(
        _replicated_step, args=(next(iterator),))
    return tf.nest.map_structure(strategy.experimental_local_results, outputs)

  all_results = []
  for _ in range(num_steps):
    predictions = predict_step(predict_iterator)
    for result in get_raw_results(predictions):
      all_results.append(result)
    if len(all_results) % 100 == 0:
      logging.info('Made predictions for %d records.', len(all_results))
  return all_results
188
189


190
191
192
193
def train_squad(strategy,
                input_meta_data,
                custom_callbacks=None,
                run_eagerly=False):
194
  """Run bert squad training."""
195
196
197
  if strategy:
    logging.info('Training using customized training loop with distribution'
                 ' strategy.')
198
199
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
200

201
202
  use_float16 = common_flags.use_float16()
  if use_float16:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
203
    tf.keras.mixed_precision.experimental.set_policy('mixed_float16')
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  epochs = FLAGS.num_train_epochs
  num_train_examples = input_meta_data['train_data_size']
  max_seq_length = input_meta_data['max_seq_length']
  steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
  warmup_steps = int(epochs * num_train_examples * 0.1 / FLAGS.train_batch_size)
  train_input_fn = functools.partial(
      input_pipeline.create_squad_dataset,
      FLAGS.train_data_path,
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)

  def _get_squad_model():
219
    """Get Squad model and optimizer."""
220
    squad_model, core_model = bert_models.squad_model(
221
222
        bert_config,
        max_seq_length,
Hongkun Yu's avatar
Hongkun Yu committed
223
        float_type=tf.float16 if use_float16 else tf.float32,
224
        hub_module_url=FLAGS.hub_module_url,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
226
        use_keras_bert=False
        if FLAGS.hub_module_url else FLAGS.use_keras_bert_for_squad)
227
228
    squad_model.optimizer = optimization.create_optimizer(
        FLAGS.learning_rate, steps_per_epoch * epochs, warmup_steps)
229
    if use_float16:
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
230
231
232
      # Wraps optimizer with a LossScaleOptimizer. This is done automatically
      # in compile() with the "mixed_float16" policy, but since we do not call
      # compile(), we must wrap the optimizer manually.
233
234
235
      squad_model.optimizer = (
          tf.keras.mixed_precision.experimental.LossScaleOptimizer(
              squad_model.optimizer, loss_scale=common_flags.get_loss_scale()))
236
237
238
239
240
241
242
    if FLAGS.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      squad_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
243
          squad_model.optimizer)
244
245
246
247
248
249
    return squad_model, core_model

  # The original BERT model does not scale the loss by
  # 1/num_replicas_in_sync. It could be an accident. So, in order to use
  # the same hyper parameter, we do the same thing here by keeping each
  # replica loss as it is.
250
251
252
  loss_fn = get_loss_fn(
      loss_factor=1.0 /
      strategy.num_replicas_in_sync if FLAGS.scale_loss else 1.0)
253
254
255
256
257
258
259

  model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_squad_model,
      loss_fn=loss_fn,
      model_dir=FLAGS.model_dir,
      steps_per_epoch=steps_per_epoch,
260
      steps_per_loop=FLAGS.steps_per_loop,
261
262
263
      epochs=epochs,
      train_input_fn=train_input_fn,
      init_checkpoint=FLAGS.init_checkpoint,
264
      run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
265
      custom_callbacks=custom_callbacks)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334


def predict_squad(strategy, input_meta_data):
  """Makes predictions for a squad dataset."""
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  doc_stride = input_meta_data['doc_stride']
  max_query_length = input_meta_data['max_query_length']
  # Whether data should be in Ver 2.0 format.
  version_2_with_negative = input_meta_data.get('version_2_with_negative',
                                                False)
  eval_examples = squad_lib.read_squad_examples(
      input_file=FLAGS.predict_file,
      is_training=False,
      version_2_with_negative=version_2_with_negative)

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  eval_writer = squad_lib.FeatureWriter(
      filename=os.path.join(FLAGS.model_dir, 'eval.tf_record'),
      is_training=False)
  eval_features = []

  def _append_feature(feature, is_padding):
    if not is_padding:
      eval_features.append(feature)
    eval_writer.process_feature(feature)

  # TPU requires a fixed batch size for all batches, therefore the number
  # of examples must be a multiple of the batch size, or else examples
  # will get dropped. So we pad with fake examples which are ignored
  # later on.
  dataset_size = squad_lib.convert_examples_to_features(
      examples=eval_examples,
      tokenizer=tokenizer,
      max_seq_length=input_meta_data['max_seq_length'],
      doc_stride=doc_stride,
      max_query_length=max_query_length,
      is_training=False,
      output_fn=_append_feature,
      batch_size=FLAGS.predict_batch_size)
  eval_writer.close()

  logging.info('***** Running predictions *****')
  logging.info('  Num orig examples = %d', len(eval_examples))
  logging.info('  Num split examples = %d', len(eval_features))
  logging.info('  Batch size = %d', FLAGS.predict_batch_size)

  num_steps = int(dataset_size / FLAGS.predict_batch_size)
  all_results = predict_squad_customized(strategy, input_meta_data, bert_config,
                                         eval_writer.filename, num_steps)

  output_prediction_file = os.path.join(FLAGS.model_dir, 'predictions.json')
  output_nbest_file = os.path.join(FLAGS.model_dir, 'nbest_predictions.json')
  output_null_log_odds_file = os.path.join(FLAGS.model_dir, 'null_odds.json')

  squad_lib.write_predictions(
      eval_examples,
      eval_features,
      all_results,
      FLAGS.n_best_size,
      FLAGS.max_answer_length,
      FLAGS.do_lower_case,
      output_prediction_file,
      output_nbest_file,
      output_null_log_odds_file,
      verbose=FLAGS.verbose_logging)


Hongkun Yu's avatar
Hongkun Yu committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  squad_model, _ = bert_models.squad_model(
350
351
      bert_config, input_meta_data['max_seq_length'], float_type=tf.float32,
      use_keras_bert=FLAGS.use_keras_bert_for_squad)
Hongkun Yu's avatar
Hongkun Yu committed
352
353
354
355
  model_saving_utils.export_bert_model(
      model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)


356
357
358
def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
359

360
361
362
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

Hongkun Yu's avatar
Hongkun Yu committed
363
364
365
366
  if FLAGS.mode == 'export_only':
    export_squad(FLAGS.model_export_path, input_meta_data)
    return

367
  strategy = None
368
369
  if FLAGS.strategy_type == 'mirror':
    strategy = tf.distribute.MirroredStrategy()
370
371
  elif FLAGS.strategy_type == 'multi_worker_mirror':
    strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
372
373
  elif FLAGS.strategy_type == 'tpu':
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
374
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
375
376
377
  else:
    raise ValueError('The distribution strategy type is not supported: %s' %
                     FLAGS.strategy_type)
Hongkun Yu's avatar
Hongkun Yu committed
378
  if FLAGS.mode in ('train', 'train_and_predict'):
379
    train_squad(strategy, input_meta_data)
Hongkun Yu's avatar
Hongkun Yu committed
380
  if FLAGS.mode in ('predict', 'train_and_predict'):
381
382
383
384
385
386
387
    predict_squad(strategy, input_meta_data)


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('model_dir')
  app.run(main)