model_lib.py 36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24
25
26

import tensorflow as tf

27
from tensorflow.python.util import function_utils
28
from object_detection import eval_util
29
from object_detection import exporter as exporter_lib
30
from object_detection import inputs
31
from object_detection.builders import graph_rewriter_builder
32
33
34
35
36
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
37
from object_detection.utils import ops
38
39
40
41
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

42
43
44
45
46
47
48
49
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
50
51
52
53
54
55
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
56
    'detection_model_fn_base': model_builder.build,
57
58
59
}


60
61
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
62
  """Extracts groundtruth data from detection_model and prepares it for eval.
63
64
65
66

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
67
    max_number_of_boxes: Max number of groundtruth boxes.
68
69
70
71

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
72
73
74
75
76
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
77
        groundtruth)
78
79
80
81
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
82
83
84
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
85
86
87
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
88
89
90
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
91
92
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
93
  else:
94
95
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
96
97
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
98
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
99
100
101
102
103
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
104
105
106
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

107
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
108
109
110
111
112
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
113
114
115
116
117
118
119
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
120
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
121
122
123
124
125
126

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

127
128
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
147
148
149
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def _provide_groundtruth(model, labels):
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
      groundtruth_masks_list=gt_masks_list,
      groundtruth_keypoints_list=gt_keypoints_list,
      groundtruth_weights_list=gt_weights_list,
      groundtruth_is_crowd_list=gt_is_crowd_list)


230
231
def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False,
                    postprocess_on_cpu=False):
232
233
234
235
236
237
238
239
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
240
241
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
242
243
244
245
246
247

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
248
  eval_config = configs['eval_config']
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
267
268
269
270

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
271
272
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
273
274
275
276
277
278
279
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
280
281
282
283
284
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
285
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
286
287
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
288
289

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
290
      _provide_groundtruth(detection_model, labels)
291
292

    preprocessed_images = features[fields.InputDataFields.image]
293
294
295
296
297
    if use_tpu and train_config.use_bfloat16:
      with tf.contrib.tpu.bfloat16_scope():
        prediction_dict = detection_model.predict(
            preprocessed_images,
            features[fields.InputDataFields.true_image_shape])
298
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
299
300
301
302
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
          features[fields.InputDataFields.true_image_shape])
303
304
305
306

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

307
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
308
309
310
311
312
313
314
315
316
      if use_tpu and postprocess_on_cpu:
        detections = tf.contrib.tpu.outside_compilation(
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
317
318
319

    if mode == tf.estimator.ModeKeys.TRAIN:
      if train_config.fine_tune_checkpoint and hparams.load_pretrained:
320
321
322
323
324
325
326
327
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
328
        asg_map = detection_model.restore_map(
329
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
330
331
332
333
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
334
335
                asg_map,
                train_config.fine_tune_checkpoint,
336
337
                include_global_step=False))
        if use_tpu:
338

339
340
341
342
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
343

344
345
346
347
348
349
350
351
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      losses_dict = detection_model.loss(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
352
      losses = [loss_tensor for loss_tensor in losses_dict.values()]
353
      if train_config.add_regularization_loss:
354
        regularization_losses = detection_model.regularization_losses()
355
356
357
        if use_tpu and train_config.use_bfloat16:
          regularization_losses = ops.bfloat16_to_float32_nested(
              regularization_losses)
358
        if regularization_losses:
359
360
          regularization_loss = tf.add_n(
              regularization_losses, name='regularization_loss')
361
          losses.append(regularization_loss)
362
          losses_dict['Loss/regularization_loss'] = regularization_loss
363
      total_loss = tf.add_n(losses, name='total_loss')
364
      losses_dict['Loss/total_loss'] = total_loss
365

366
367
368
369
370
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

371
372
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
373
374
375
376
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

377
    if mode == tf.estimator.ModeKeys.TRAIN:
378
      if use_tpu:
379
        training_optimizer = tf.contrib.tpu.CrossShardOptimizer(
380
381
382
383
            training_optimizer)

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
384
385
386
387
388
389
390
391
392
393
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
      trainable_variables = tf.contrib.framework.filter_variables(
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
394
395
396
397
398
399
400
401
402

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
403
404
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
405
406
407
408
409
410
      train_op = tf.contrib.layers.optimize_loss(
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
411
          update_ops=detection_model.updates(),
412
413
414
415
416
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
417
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
418
419
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
420
              tf.estimator.export.PredictOutput(exported_output)
421
422
423
      }

    eval_metric_ops = None
424
    scaffold = None
425
    if mode == tf.estimator.ModeKeys.EVAL:
426
427
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
428
429
430
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
431
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
432
      if use_original_images:
433
434
435
436
437
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
438
439
      else:
        eval_images = features[fields.InputDataFields.image]
440
441
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
442

443
444
445
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
446
447
448
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
449
450
451
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
452
453
454
455
456
457

      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
458
      vis_metric_ops = None
459
      if not use_tpu and use_original_images:
460
461
462
463
464
465
466
467
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
            use_normalized_coordinates=False)
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
468

469
470
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
471
          eval_config, list(category_index.values()), eval_dict)
472
473
474
475
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
476
477
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
478
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
479

480
481
482
483
484
485
486
487
488
489
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

490
491
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
492
493
494
495
496
497
498
499
500
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
501
502
503
504
505
506
507
508
509
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
510
511
512
513
514
515
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
516
517
          export_outputs=export_outputs,
          scaffold=scaffold)
518
519
520
521

  return model_fn


522
523
524
def create_estimator_and_inputs(run_config,
                                hparams,
                                pipeline_config_path,
525
                                config_override=None,
526
                                train_steps=None,
527
528
                                sample_1_of_n_eval_examples=1,
                                sample_1_of_n_eval_on_train_examples=1,
529
530
531
532
533
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
534
                                override_eval_num_epochs=True,
535
                                save_final_config=False,
536
537
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
538
539
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
540
541
542
543
544

  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
545
546
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
547
548
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
549
550
551
552
553
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
554
555
556
557
558
559
560
561
562
563
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

564
565
566
567
568
569
570
571
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
572
573
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
574
575
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
576
577
578
579
580
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
581
582
583
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
584
585
586
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
587
588
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
589
    'eval_on_train_input_fn': An evaluation-on-train input function.
590
591
592
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
593
  """
594
595
596
597
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
598
599
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
600
601
602
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
603
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
604

605
606
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
607
608
  kwargs.update({
      'train_steps': train_steps,
609
610
      'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples,
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
611
612
613
614
615
  })
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
616
  configs = merge_external_params_with_configs(
617
      configs, hparams, kwargs_dict=kwargs)
618
619
620
621
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
622
623
624
625
626
627
628
629
630
631
632
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
633

634
635
636
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
637
638

  detection_model_fn = functools.partial(
639
      detection_model_fn_base, model_config=model_config)
640

641
  # Create the input functions for TRAIN/EVAL/PREDICT.
642
  train_input_fn = create_train_input_fn(
643
644
645
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
646
647
648
649
650
651
652
653
654
  eval_input_fns = [
      create_eval_input_fn(
          eval_config=eval_config,
          eval_input_config=eval_input_config,
          model_config=model_config) for eval_input_config in eval_input_configs
  ]
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
655
656
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
657
      eval_input_config=eval_on_train_input_config,
658
      model_config=model_config)
659
  predict_input_fn = create_predict_input_fn(
660
      model_config=model_config, predict_input_config=eval_input_configs[0])
661

662
663
664
  # Read export_to_tpu from hparams if not passed.
  if export_to_tpu is None:
    export_to_tpu = hparams.get('export_to_tpu', False)
665
666
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
667
668
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
669
  if use_tpu_estimator:
670
671
672
673
674
    # Multicore inference disabled due to b/129367127
    tpu_estimator_args = function_utils.fn_args(tf.contrib.tpu.TPUEstimator)
    kwargs = {}
    if 'experimental_export_device_assignment' in tpu_estimator_args:
      kwargs['experimental_export_device_assignment'] = True
675
    estimator = tf.contrib.tpu.TPUEstimator(
676
677
678
679
680
681
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
682
683
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
684
685
        params=params if params else {},
        **kwargs)
686
687
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
688

689
  # Write the as-run pipeline config to disk.
690
  if run_config.is_chief and save_final_config:
691
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
692
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
693

694
  return dict(
695
696
      estimator=estimator,
      train_input_fn=train_input_fn,
697
698
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
699
      eval_on_train_input_fn=eval_on_train_input_fn,
700
      predict_input_fn=predict_input_fn,
701
      train_steps=train_steps)
702
703
704


def create_train_and_eval_specs(train_input_fn,
705
                                eval_input_fns,
706
                                eval_on_train_input_fn,
707
708
709
710
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
711
                                eval_spec_names=None):
712
713
714
715
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
716
717
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
718
719
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
720
721
722
723
724
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
725
    eval_spec_names: A list of string names for each `EvalSpec`.
726
727

  Returns:
728
729
730
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
731
732
733
734
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

735
  if eval_spec_names is None:
736
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
737
738

  eval_specs = []
739
740
741
742
743
744
745
746
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
747
748
749
750
751
752
753
754
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
755
756
757
758

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
759
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
760
761

  return train_spec, eval_specs
762
763


764
def continuous_eval(estimator, model_dir, input_fn, train_steps, name):
765
766
767
768
769
770
771
772
773
774
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
  """
775

776
777
778
779
780
781
782
783
784
785
786
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

  for ckpt in tf.contrib.training.checkpoints_iterator(
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
      eval_results = estimator.evaluate(
787
          input_fn=input_fn, steps=None, checkpoint_path=ckpt, name=name)
788
789
790
791
792
793
794
795
796
797
798
799
800
801
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


802
803
804
805
806
807
808
809
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
810

811
812
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
813

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
848
      save_final_config=True,
849
850
851
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
852
  eval_input_fns = train_and_eval_dict['eval_input_fns']
853
854
855
856
857
858
859
860
861
862
863
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
      tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy(
          serving_input_fn=predict_input_fn)
  ]

  return tf.contrib.learn.Experiment(
      estimator=estimator,
      train_input_fn=train_input_fn,
864
      eval_input_fn=eval_input_fns[0],
865
      train_steps=train_steps,
866
      eval_steps=None,
867
      export_strategies=export_strategies,
868
869
      eval_delay_secs=120,
  )