optimizer_builder.py 5.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to build DetectionModel training optimizers."""

import tensorflow as tf
19
20


21
22
23
from object_detection.utils import learning_schedules


24
def build(optimizer_config, global_step=None):
25
26
27
28
  """Create optimizer based on config.

  Args:
    optimizer_config: A Optimizer proto message.
29
30
    global_step: A variable representing the current step.
      If None, defaults to tf.train.get_or_create_global_step()
31
32

  Returns:
33
    An optimizer and a list of variables for summary.
34
35
36
37
38
39
40

  Raises:
    ValueError: when using an unsupported input data type.
  """
  optimizer_type = optimizer_config.WhichOneof('optimizer')
  optimizer = None

41
  summary_vars = []
42
43
  if optimizer_type == 'rms_prop_optimizer':
    config = optimizer_config.rms_prop_optimizer
44
45
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
46
    summary_vars.append(learning_rate)
47
    optimizer = tf.train.RMSPropOptimizer(
48
        learning_rate,
49
50
51
52
53
54
        decay=config.decay,
        momentum=config.momentum_optimizer_value,
        epsilon=config.epsilon)

  if optimizer_type == 'momentum_optimizer':
    config = optimizer_config.momentum_optimizer
55
56
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
57
    summary_vars.append(learning_rate)
58
    optimizer = tf.train.MomentumOptimizer(
59
        learning_rate,
60
61
62
63
        momentum=config.momentum_optimizer_value)

  if optimizer_type == 'adam_optimizer':
    config = optimizer_config.adam_optimizer
64
65
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
66
67
    summary_vars.append(learning_rate)
    optimizer = tf.train.AdamOptimizer(learning_rate)
68

69

70
71
72
73
74
75
76
  if optimizer is None:
    raise ValueError('Optimizer %s not supported.' % optimizer_type)

  if optimizer_config.use_moving_average:
    optimizer = tf.contrib.opt.MovingAverageOptimizer(
        optimizer, average_decay=optimizer_config.moving_average_decay)

77
  return optimizer, summary_vars
78
79


80
def _create_learning_rate(learning_rate_config, global_step=None):
81
82
83
84
  """Create optimizer learning rate based on config.

  Args:
    learning_rate_config: A LearningRate proto message.
85
86
    global_step: A variable representing the current step.
      If None, defaults to tf.train.get_or_create_global_step()
87
88
89
90
91
92
93

  Returns:
    A learning rate.

  Raises:
    ValueError: when using an unsupported input data type.
  """
94
95
  if global_step is None:
    global_step = tf.train.get_or_create_global_step()
96
97
98
99
  learning_rate = None
  learning_rate_type = learning_rate_config.WhichOneof('learning_rate')
  if learning_rate_type == 'constant_learning_rate':
    config = learning_rate_config.constant_learning_rate
100
101
    learning_rate = tf.constant(config.learning_rate, dtype=tf.float32,
                                name='learning_rate')
102
103
104

  if learning_rate_type == 'exponential_decay_learning_rate':
    config = learning_rate_config.exponential_decay_learning_rate
105
    learning_rate = learning_schedules.exponential_decay_with_burnin(
106
        global_step,
107
        config.initial_learning_rate,
108
109
        config.decay_steps,
        config.decay_factor,
110
111
112
113
        burnin_learning_rate=config.burnin_learning_rate,
        burnin_steps=config.burnin_steps,
        min_learning_rate=config.min_learning_rate,
        staircase=config.staircase)
114
115
116
117
118
119
120
121
122

  if learning_rate_type == 'manual_step_learning_rate':
    config = learning_rate_config.manual_step_learning_rate
    if not config.schedule:
      raise ValueError('Empty learning rate schedule.')
    learning_rate_step_boundaries = [x.step for x in config.schedule]
    learning_rate_sequence = [config.initial_learning_rate]
    learning_rate_sequence += [x.learning_rate for x in config.schedule]
    learning_rate = learning_schedules.manual_stepping(
123
        global_step, learning_rate_step_boundaries,
124
        learning_rate_sequence, config.warmup)
125

Vivek Rathod's avatar
Vivek Rathod committed
126
127
128
  if learning_rate_type == 'cosine_decay_learning_rate':
    config = learning_rate_config.cosine_decay_learning_rate
    learning_rate = learning_schedules.cosine_decay_with_warmup(
129
        global_step,
Vivek Rathod's avatar
Vivek Rathod committed
130
131
132
        config.learning_rate_base,
        config.total_steps,
        config.warmup_learning_rate,
133
134
        config.warmup_steps,
        config.hold_base_rate_steps)
Vivek Rathod's avatar
Vivek Rathod committed
135

136
137
138
139
  if learning_rate is None:
    raise ValueError('Learning_rate %s not supported.' % learning_rate_type)

  return learning_rate