optimizer_builder.py 4.57 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to build DetectionModel training optimizers."""

import tensorflow as tf
19
20


21
22
23
from object_detection.utils import learning_schedules


24
def build(optimizer_config):
25
26
27
28
29
30
  """Create optimizer based on config.

  Args:
    optimizer_config: A Optimizer proto message.

  Returns:
31
    An optimizer and a list of variables for summary.
32
33
34
35
36
37
38

  Raises:
    ValueError: when using an unsupported input data type.
  """
  optimizer_type = optimizer_config.WhichOneof('optimizer')
  optimizer = None

39
  summary_vars = []
40
41
  if optimizer_type == 'rms_prop_optimizer':
    config = optimizer_config.rms_prop_optimizer
42
43
    learning_rate = _create_learning_rate(config.learning_rate)
    summary_vars.append(learning_rate)
44
    optimizer = tf.train.RMSPropOptimizer(
45
        learning_rate,
46
47
48
49
50
51
        decay=config.decay,
        momentum=config.momentum_optimizer_value,
        epsilon=config.epsilon)

  if optimizer_type == 'momentum_optimizer':
    config = optimizer_config.momentum_optimizer
52
53
    learning_rate = _create_learning_rate(config.learning_rate)
    summary_vars.append(learning_rate)
54
    optimizer = tf.train.MomentumOptimizer(
55
        learning_rate,
56
57
58
59
        momentum=config.momentum_optimizer_value)

  if optimizer_type == 'adam_optimizer':
    config = optimizer_config.adam_optimizer
60
61
62
    learning_rate = _create_learning_rate(config.learning_rate)
    summary_vars.append(learning_rate)
    optimizer = tf.train.AdamOptimizer(learning_rate)
63

64

65
66
67
68
69
70
71
  if optimizer is None:
    raise ValueError('Optimizer %s not supported.' % optimizer_type)

  if optimizer_config.use_moving_average:
    optimizer = tf.contrib.opt.MovingAverageOptimizer(
        optimizer, average_decay=optimizer_config.moving_average_decay)

72
  return optimizer, summary_vars
73
74


75
def _create_learning_rate(learning_rate_config):
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  """Create optimizer learning rate based on config.

  Args:
    learning_rate_config: A LearningRate proto message.

  Returns:
    A learning rate.

  Raises:
    ValueError: when using an unsupported input data type.
  """
  learning_rate = None
  learning_rate_type = learning_rate_config.WhichOneof('learning_rate')
  if learning_rate_type == 'constant_learning_rate':
    config = learning_rate_config.constant_learning_rate
91
92
    learning_rate = tf.constant(config.learning_rate, dtype=tf.float32,
                                name='learning_rate')
93
94
95

  if learning_rate_type == 'exponential_decay_learning_rate':
    config = learning_rate_config.exponential_decay_learning_rate
96
    learning_rate = learning_schedules.exponential_decay_with_burnin(
Vivek Rathod's avatar
Vivek Rathod committed
97
        tf.train.get_or_create_global_step(),
98
        config.initial_learning_rate,
99
100
        config.decay_steps,
        config.decay_factor,
101
102
103
104
        burnin_learning_rate=config.burnin_learning_rate,
        burnin_steps=config.burnin_steps,
        min_learning_rate=config.min_learning_rate,
        staircase=config.staircase)
105
106
107
108
109
110
111
112
113

  if learning_rate_type == 'manual_step_learning_rate':
    config = learning_rate_config.manual_step_learning_rate
    if not config.schedule:
      raise ValueError('Empty learning rate schedule.')
    learning_rate_step_boundaries = [x.step for x in config.schedule]
    learning_rate_sequence = [config.initial_learning_rate]
    learning_rate_sequence += [x.learning_rate for x in config.schedule]
    learning_rate = learning_schedules.manual_stepping(
Vivek Rathod's avatar
Vivek Rathod committed
114
        tf.train.get_or_create_global_step(), learning_rate_step_boundaries,
115
        learning_rate_sequence, config.warmup)
116

Vivek Rathod's avatar
Vivek Rathod committed
117
118
119
120
121
122
123
  if learning_rate_type == 'cosine_decay_learning_rate':
    config = learning_rate_config.cosine_decay_learning_rate
    learning_rate = learning_schedules.cosine_decay_with_warmup(
        tf.train.get_or_create_global_step(),
        config.learning_rate_base,
        config.total_steps,
        config.warmup_learning_rate,
124
125
        config.warmup_steps,
        config.hold_base_rate_steps)
Vivek Rathod's avatar
Vivek Rathod committed
126

127
128
129
130
  if learning_rate is None:
    raise ValueError('Learning_rate %s not supported.' % learning_rate_type)

  return learning_rate