video_classification.py 13.6 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
"""Video classification configuration definition."""
import dataclasses
Yeqing Li's avatar
Yeqing Li committed
18
from typing import Optional, Tuple
19
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import backbones_3d
from official.vision.beta.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """The base configuration for building datasets."""
  name: Optional[str] = None
  file_type: Optional[str] = 'tfrecord'
  compressed_input: bool = False
  split: str = 'train'
Dan Kondratyuk's avatar
Dan Kondratyuk committed
34
  variant_name: Optional[str] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
35
36
  feature_shape: Tuple[int, ...] = (64, 224, 224, 3)
  temporal_stride: int = 1
37
  random_stride_range: int = 0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
  num_test_clips: int = 1
Yin Cui's avatar
Yin Cui committed
39
  num_test_crops: int = 1
Abdullah Rashwan's avatar
Abdullah Rashwan committed
40
41
42
43
44
45
46
47
48
49
50
  num_classes: int = -1
  num_examples: int = -1
  global_batch_size: int = 128
  data_format: str = 'channels_last'
  dtype: str = 'float32'
  one_hot: bool = True
  shuffle_buffer_size: int = 64
  cache: bool = False
  input_path: str = ''
  is_training: bool = True
  cycle_length: int = 10
Yeqing Li's avatar
Yeqing Li committed
51
  drop_remainder: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
52
  min_image_size: int = 256
Yeqing Li's avatar
Yeqing Li committed
53
  is_multilabel: bool = False
Yeqing Li's avatar
Yeqing Li committed
54
55
56
  output_audio: bool = False
  audio_feature: str = ''
  audio_feature_shape: Tuple[int, ...] = (-1,)
Yeqing Li's avatar
Yeqing Li committed
57
58
59
60
  aug_min_aspect_ratio: float = 0.5
  aug_max_aspect_ratio: float = 2.0
  aug_min_area_ratio: float = 0.49
  aug_max_area_ratio: float = 1.0
Dan Kondratyuk's avatar
Dan Kondratyuk committed
61
  aug_type: Optional[str] = None  # 'autoaug', 'randaug', or None
Yeqing Li's avatar
Yeqing Li committed
62
63
  image_field_key: str = 'image/encoded'
  label_field_key: str = 'clip/label/index'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
65


Yin Cui's avatar
Yin Cui committed
66
67
68
69
70
71
72
def kinetics400(is_training):
  """Generated Kinectics 400 dataset configs."""
  return DataConfig(
      name='kinetics400',
      num_classes=400,
      is_training=is_training,
      split='train' if is_training else 'valid',
Yeqing Li's avatar
Yeqing Li committed
73
      drop_remainder=is_training,
Yin Cui's avatar
Yin Cui committed
74
75
76
77
      num_examples=215570 if is_training else 17706,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
81
82
83
84
def kinetics600(is_training):
  """Generated Kinectics 600 dataset configs."""
  return DataConfig(
      name='kinetics600',
      num_classes=600,
      is_training=is_training,
      split='train' if is_training else 'valid',
Yeqing Li's avatar
Yeqing Li committed
85
      drop_remainder=is_training,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
87
88
89
      num_examples=366016 if is_training else 27780,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


Yeqing Li's avatar
Yeqing Li committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def kinetics700(is_training):
  """Generated Kinectics 600 dataset configs."""
  return DataConfig(
      name='kinetics700',
      num_classes=700,
      is_training=is_training,
      split='train' if is_training else 'valid',
      drop_remainder=is_training,
      num_examples=522883 if is_training else 33441,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


def kinetics700_2020(is_training):
  """Generated Kinectics 600 dataset configs."""
  return DataConfig(
      name='kinetics700',
      num_classes=700,
      is_training=is_training,
      split='train' if is_training else 'valid',
      drop_remainder=is_training,
      num_examples=535982 if is_training else 33640,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
115
116
@dataclasses.dataclass
class VideoClassificationModel(hyperparams.Config):
  """The model config."""
Yeqing Li's avatar
Yeqing Li committed
117
  model_type: str = 'video_classification'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
119
  backbone: backbones_3d.Backbone3D = backbones_3d.Backbone3D(
      type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50())
Yeqing Li's avatar
Yeqing Li committed
120
121
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
  dropout_rate: float = 0.2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
123
  aggregate_endpoints: bool = False
Yeqing Li's avatar
Yeqing Li committed
124
  require_endpoints: Optional[Tuple[str, ...]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
126
127
128
129
130
131
132
133


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0


Yeqing Li's avatar
Yeqing Li committed
134
135
136
137
138
@dataclasses.dataclass
class Metrics(hyperparams.Config):
  use_per_class_recall: bool = False


Abdullah Rashwan's avatar
Abdullah Rashwan committed
139
140
141
142
@dataclasses.dataclass
class VideoClassificationTask(cfg.TaskConfig):
  """The task config."""
  model: VideoClassificationModel = VideoClassificationModel()
Yeqing Li's avatar
Yeqing Li committed
143
144
145
  train_data: DataConfig = DataConfig(is_training=True, drop_remainder=True)
  validation_data: DataConfig = DataConfig(
      is_training=False, drop_remainder=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
146
  losses: Losses = Losses()
Yeqing Li's avatar
Yeqing Li committed
147
  metrics: Metrics = Metrics()
148
149
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Yeqing Li's avatar
Yeqing Li committed
150
  # Spatial Partitioning fields.
Yeqing Li's avatar
Yeqing Li committed
151
152
  train_input_partition_dims: Optional[Tuple[int, ...]] = None
  eval_input_partition_dims: Optional[Tuple[int, ...]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208


def add_trainer(experiment: cfg.ExperimentConfig,
                train_batch_size: int,
                eval_batch_size: int,
                learning_rate: float = 1.6,
                train_epochs: int = 44,
                warmup_epochs: int = 5):
  """Add and config a trainer to the experiment config."""
  if experiment.task.train_data.num_examples <= 0:
    raise ValueError('Wrong train dataset size {!r}'.format(
        experiment.task.train_data))
  if experiment.task.validation_data.num_examples <= 0:
    raise ValueError('Wrong validation dataset size {!r}'.format(
        experiment.task.validation_data))
  experiment.task.train_data.global_batch_size = train_batch_size
  experiment.task.validation_data.global_batch_size = eval_batch_size
  steps_per_epoch = experiment.task.train_data.num_examples // train_batch_size
  experiment.trainer = cfg.TrainerConfig(
      steps_per_loop=steps_per_epoch,
      summary_interval=steps_per_epoch,
      checkpoint_interval=steps_per_epoch,
      train_steps=train_epochs * steps_per_epoch,
      validation_steps=experiment.task.validation_data.num_examples //
      eval_batch_size,
      validation_interval=steps_per_epoch,
      optimizer_config=optimization.OptimizationConfig({
          'optimizer': {
              'type': 'sgd',
              'sgd': {
                  'momentum': 0.9,
                  'nesterov': True,
              }
          },
          'learning_rate': {
              'type': 'cosine',
              'cosine': {
                  'initial_learning_rate': learning_rate,
                  'decay_steps': train_epochs * steps_per_epoch,
              }
          },
          'warmup': {
              'type': 'linear',
              'linear': {
                  'warmup_steps': warmup_epochs * steps_per_epoch,
                  'warmup_learning_rate': 0
              }
          }
      }))
  return experiment


@exp_factory.register_config_factory('video_classification')
def video_classification() -> cfg.ExperimentConfig:
  """Video classification general."""
  return cfg.ExperimentConfig(
Yeqing Li's avatar
Yeqing Li committed
209
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
210
211
212
213
214
215
216
217
218
      task=VideoClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])


219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
@exp_factory.register_config_factory('video_classification_ucf101')
def video_classification_ucf101() -> cfg.ExperimentConfig:
  """Video classification on UCF-101 with resnet."""
  train_dataset = DataConfig(
      name='ucf101',
      num_classes=101,
      is_training=True,
      split='train',
      drop_remainder=True,
      num_examples=9537,
      temporal_stride=2,
      feature_shape=(32, 224, 224, 3))
  train_dataset.tfds_name = 'ucf101'
  train_dataset.tfds_split = 'train'
  validation_dataset = DataConfig(
      name='ucf101',
      num_classes=101,
      is_training=True,
      split='test',
      drop_remainder=False,
      num_examples=3783,
      temporal_stride=2,
      feature_shape=(32, 224, 224, 3))
  validation_dataset.tfds_name = 'ucf101'
  validation_dataset.tfds_split = 'test'
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
261
262
263
264
265
266
  add_trainer(
      config,
      train_batch_size=64,
      eval_batch_size=16,
      learning_rate=0.8,
      train_epochs=100)
267
268
269
  return config


Yin Cui's avatar
Yin Cui committed
270
271
272
273
274
275
276
277
278
279
@exp_factory.register_config_factory('video_classification_kinetics400')
def video_classification_kinetics400() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 400 with resnet."""
  train_dataset = kinetics400(is_training=True)
  validation_dataset = kinetics400(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
Yeqing Li's avatar
Yeqing Li committed
280
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
Yin Cui's avatar
Yin Cui committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config


Abdullah Rashwan's avatar
Abdullah Rashwan committed
296
297
@exp_factory.register_config_factory('video_classification_kinetics600')
def video_classification_kinetics600() -> cfg.ExperimentConfig:
Yin Cui's avatar
Yin Cui committed
298
  """Video classification on Kinectics 600 with resnet."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
299
300
301
302
303
304
305
  train_dataset = kinetics600(is_training=True)
  validation_dataset = kinetics600(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
Yeqing Li's avatar
Yeqing Li committed
306
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
307
308
309
310
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
Yeqing Li's avatar
Yeqing Li committed
311
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
312
313
314
315
316
317
318
319
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config
Yeqing Li's avatar
Yeqing Li committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371


@exp_factory.register_config_factory('video_classification_kinetics700')
def video_classification_kinetics700() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 700 with resnet."""
  train_dataset = kinetics700(is_training=True)
  validation_dataset = kinetics700(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config


@exp_factory.register_config_factory('video_classification_kinetics700_2020')
def video_classification_kinetics700_2020() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 700 2020 with resnet."""
  train_dataset = kinetics700_2020(is_training=True)
  validation_dataset = kinetics700_2020(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config