basnet.py 2.04 KB
Newer Older
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Gunho Park's avatar
Gunho Park committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15

"""Export module for BASNet."""
Gunho Park's avatar
Gunho Park committed
16
17
18

import tensorflow as tf

19
from official.projects.basnet.tasks import basnet
Gunho Park's avatar
Gunho Park committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from official.vision.beta.serving import semantic_segmentation


MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class BASNetModule(semantic_segmentation.SegmentationModule):
  """BASNet Module."""

  def _build_model(self):
    input_specs = tf.keras.layers.InputSpec(
        shape=[self._batch_size] + self._input_image_size + [3])

    return basnet.build_basnet_model(
        input_specs=input_specs,
        model_config=self.params.task.model,
        l2_regularizer=None)

  def serve(self, images):
    """Cast image to float and run inference.

    Args:
      images: uint8 Tensor of shape [batch_size, None, None, 3]
    Returns:
      Tensor holding classification output logits.
    """
    with tf.device('cpu:0'):
      images = tf.cast(images, dtype=tf.float32)

      images = tf.nest.map_structure(
          tf.identity,
          tf.map_fn(
              self._build_inputs, elems=images,
              fn_output_signature=tf.TensorSpec(
                  shape=self._input_image_size + [3], dtype=tf.float32),
              parallel_iterations=32
              )
          )

    masks = self.inference_step(images)
Gunho Park's avatar
Gunho Park committed
61
62
63
64
    keys = sorted(masks.keys())
    output = tf.image.resize(
        masks[keys[-1]],
        self._input_image_size, method='bilinear')
Gunho Park's avatar
Gunho Park committed
65
66

    return dict(predicted_masks=output)