# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Export module for BASNet.""" import tensorflow as tf from official.projects.basnet.tasks import basnet from official.vision.beta.serving import semantic_segmentation MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255) STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255) class BASNetModule(semantic_segmentation.SegmentationModule): """BASNet Module.""" def _build_model(self): input_specs = tf.keras.layers.InputSpec( shape=[self._batch_size] + self._input_image_size + [3]) return basnet.build_basnet_model( input_specs=input_specs, model_config=self.params.task.model, l2_regularizer=None) def serve(self, images): """Cast image to float and run inference. Args: images: uint8 Tensor of shape [batch_size, None, None, 3] Returns: Tensor holding classification output logits. """ with tf.device('cpu:0'): images = tf.cast(images, dtype=tf.float32) images = tf.nest.map_structure( tf.identity, tf.map_fn( self._build_inputs, elems=images, fn_output_signature=tf.TensorSpec( shape=self._input_image_size + [3], dtype=tf.float32), parallel_iterations=32 ) ) masks = self.inference_step(images) keys = sorted(masks.keys()) output = tf.image.resize( masks[keys[-1]], self._input_image_size, method='bilinear') return dict(predicted_masks=output)