sentence_prediction_test.py 10.1 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
"""Tests for official.nlp.tasks.sentence_prediction."""
16
import functools
17
import os
18
19

from absl.testing import parameterized
20
import numpy as np
21
22
23
24
import tensorflow as tf

from official.nlp.configs import bert
from official.nlp.configs import encoders
Chen Chen's avatar
Chen Chen committed
25
from official.nlp.data import sentence_prediction_dataloader
Hongkun Yu's avatar
Hongkun Yu committed
26
from official.nlp.tasks import masked_lm
27
28
29
from official.nlp.tasks import sentence_prediction


30
31
32
33
34
35
36
37
38
39
def _create_fake_dataset(output_path, seq_length, num_classes, num_examples):
  """Creates a fake dataset."""
  writer = tf.io.TFRecordWriter(output_path)

  def create_int_feature(values):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))

  def create_float_feature(values):
    return tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))

Chen Chen's avatar
Chen Chen committed
40
  for i in range(num_examples):
41
42
43
44
45
46
    features = {}
    input_ids = np.random.randint(100, size=(seq_length))
    features["input_ids"] = create_int_feature(input_ids)
    features["input_mask"] = create_int_feature(np.ones_like(input_ids))
    features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
    features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
Chen Chen's avatar
Chen Chen committed
47
    features["example_id"] = create_int_feature([i])
48
49
50
51
52
53
54
55
56
57
58
59

    if num_classes == 1:
      features["label_ids"] = create_float_feature([np.random.random()])
    else:
      features["label_ids"] = create_int_feature(
          [np.random.random_integers(0, num_classes - 1, size=())])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


60
class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase):
61

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
62
63
  def setUp(self):
    super(SentencePredictionTaskTest, self).setUp()
Chen Chen's avatar
Chen Chen committed
64
65
66
    self._train_data_config = (
        sentence_prediction_dataloader.SentencePredictionDataConfig(
            input_path="dummy", seq_length=128, global_batch_size=1))
67

Pengchong Jin's avatar
Pengchong Jin committed
68
  def get_model_config(self, num_classes):
Hongkun Yu's avatar
Hongkun Yu committed
69
    return sentence_prediction.ModelConfig(
Hongkun Yu's avatar
Hongkun Yu committed
70
71
        encoder=encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)),
Hongkun Yu's avatar
Hongkun Yu committed
72
        num_classes=num_classes)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73

74
75
76
77
78
79
  def _run_task(self, config):
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()

    strategy = tf.distribute.get_strategy()
Chenkai Kuang's avatar
Chenkai Kuang committed
80
    dataset = strategy.distribute_datasets_from_function(
81
        functools.partial(task.build_inputs, config.train_data))
82
83
84
85

    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
Chen Chen's avatar
Chen Chen committed
86
    model.save(os.path.join(self.get_temp_dir(), "saved_model"))
87
    return task.validation_step(next(iterator), model, metrics=metrics)
88

Hongkun Yu's avatar
Hongkun Yu committed
89
90
91
92
93
  @parameterized.named_parameters(
      ("init_cls_pooler", True),
      ("init_encoder", False),
  )
  def test_task(self, init_cls_pooler):
Hongkun Yu's avatar
Hongkun Yu committed
94
    # Saves a checkpoint.
Hongkun Yu's avatar
Hongkun Yu committed
95
96
97
    pretrain_cfg = bert.PretrainerConfig(
        encoder=encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)),
Hongkun Yu's avatar
Hongkun Yu committed
98
99
        cls_heads=[
            bert.ClsHeadConfig(
Hongkun Yu's avatar
Hongkun Yu committed
100
                inner_dim=768, num_classes=2, name="next_sentence")
Hongkun Yu's avatar
Hongkun Yu committed
101
        ])
Hongkun Yu's avatar
Hongkun Yu committed
102
    pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
Hongkun Yu's avatar
Hongkun Yu committed
103
104
    # The model variables will be created after the forward call.
    _ = pretrain_model(pretrain_model.inputs)
Hongkun Yu's avatar
Hongkun Yu committed
105
106
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
Hongkun Yu's avatar
Hongkun Yu committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    init_path = ckpt.save(self.get_temp_dir())

    # Creates the task.
    config = sentence_prediction.SentencePredictionConfig(
        init_checkpoint=init_path,
        model=self.get_model_config(num_classes=2),
        train_data=self._train_data_config,
        init_cls_pooler=init_cls_pooler)
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    dataset = task.build_inputs(config.train_data)

    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
Hongkun Yu's avatar
Hongkun Yu committed
122
    task.initialize(model)
Hongkun Yu's avatar
Hongkun Yu committed
123
124
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
    task.validation_step(next(iterator), model, metrics=metrics)
Hongkun Yu's avatar
Hongkun Yu committed
125

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  @parameterized.named_parameters(
      {
          "testcase_name": "regression",
          "num_classes": 1,
      },
      {
          "testcase_name": "classification",
          "num_classes": 2,
      },
  )
  def test_metrics_and_losses(self, num_classes):
    config = sentence_prediction.SentencePredictionConfig(
        init_checkpoint=self.get_temp_dir(),
        model=self.get_model_config(num_classes),
        train_data=self._train_data_config)
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    if num_classes == 1:
      self.assertIsInstance(metrics[0], tf.keras.metrics.MeanSquaredError)
    else:
Hongkun Yu's avatar
Hongkun Yu committed
147
148
      self.assertIsInstance(metrics[0],
                            tf.keras.metrics.SparseCategoricalAccuracy)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
150
151
152
153
154
155
156
157

    dataset = task.build_inputs(config.train_data)
    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)

    logs = task.validation_step(next(iterator), model, metrics=metrics)
    loss = logs["loss"].numpy()
    if num_classes == 1:
158
      self.assertGreater(loss, 1.0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
159
    else:
160
      self.assertLess(loss, 1.0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161

162
163
164
  @parameterized.parameters(("matthews_corrcoef", 2),
                            ("pearson_spearman_corr", 1))
  def test_np_metrics(self, metric_type, num_classes):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
165
    config = sentence_prediction.SentencePredictionConfig(
166
167
        metric_type=metric_type,
        init_checkpoint=self.get_temp_dir(),
Pengchong Jin's avatar
Pengchong Jin committed
168
        model=self.get_model_config(num_classes),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
169
170
171
        train_data=self._train_data_config)
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
172
173
174
175
176
177
178
179
180
181
182
183
184
    dataset = task.build_inputs(config.train_data)

    iterator = iter(dataset)
    strategy = tf.distribute.get_strategy()
    distributed_outputs = strategy.run(
        functools.partial(task.validation_step, model=model),
        args=(next(iterator),))
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    distributed_outputs)
    aggregated = task.aggregate_logs(step_outputs=outputs)
    aggregated = task.aggregate_logs(state=aggregated, step_outputs=outputs)
    self.assertIn(metric_type, task.reduce_aggregated_logs(aggregated))

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  def test_np_metrics_cola_partial_batch(self):
    train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
    num_examples = 5
    global_batch_size = 8
    seq_length = 16
    _create_fake_dataset(
        train_data_path,
        seq_length=seq_length,
        num_classes=2,
        num_examples=num_examples)

    train_data_config = (
        sentence_prediction_dataloader.SentencePredictionDataConfig(
            input_path=train_data_path,
            seq_length=seq_length,
            is_training=True,
            label_type="int",
            global_batch_size=global_batch_size,
            drop_remainder=False,
            include_example_id=True))

    config = sentence_prediction.SentencePredictionConfig(
        metric_type="matthews_corrcoef",
        model=self.get_model_config(2),
        train_data=train_data_config)
    outputs = self._run_task(config)
    self.assertEqual(outputs["sentence_prediction"].shape.as_list(), [8, 1])

213
  def _export_bert_tfhub(self):
214
215
216
217
218
219
220
    encoder = encoders.build_encoder(
        encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
    encoder_inputs_dict = {x.name: x for x in encoder.inputs}
    encoder_output_dict = encoder(encoder_inputs_dict)
    core_model = tf.keras.Model(
        inputs=encoder_inputs_dict, outputs=encoder_output_dict)
221
    hub_destination = os.path.join(self.get_temp_dir(), "hub")
222
    core_model.save(hub_destination, include_optimizer=False, save_format="tf")
223
224
225
226
227
228
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = sentence_prediction.SentencePredictionConfig(
        hub_module_url=hub_module_url,
Pengchong Jin's avatar
Pengchong Jin committed
229
        model=self.get_model_config(2),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
230
        train_data=self._train_data_config)
231
232
    self._run_task(config)

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  @parameterized.named_parameters(("classification", 5), ("regression", 1))
  def test_prediction(self, num_classes):
    task_config = sentence_prediction.SentencePredictionConfig(
        model=self.get_model_config(num_classes=num_classes),
        train_data=self._train_data_config)
    task = sentence_prediction.SentencePredictionTask(task_config)
    model = task.build_model()

    test_data_path = os.path.join(self.get_temp_dir(), "test.tf_record")
    seq_length = 16
    num_examples = 100
    _create_fake_dataset(
        test_data_path,
        seq_length=seq_length,
        num_classes=num_classes,
        num_examples=num_examples)

    test_data_config = (
        sentence_prediction_dataloader.SentencePredictionDataConfig(
            input_path=test_data_path,
            seq_length=seq_length,
            is_training=False,
            label_type="int" if num_classes > 1 else "float",
            global_batch_size=16,
Chen Chen's avatar
Chen Chen committed
257
258
            drop_remainder=False,
            include_example_id=True))
259
260
261

    predictions = sentence_prediction.predict(task, test_data_config, model)
    self.assertLen(predictions, num_examples)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
262
263
264
    for prediction in predictions:
      self.assertEqual(prediction.dtype,
                       tf.int64 if num_classes > 1 else tf.float32)
265

266
267
268

if __name__ == "__main__":
  tf.test.main()