sentence_prediction_test.py 4.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.sentence_prediction."""
17
import functools
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
import tensorflow as tf

from official.nlp.bert import configs
from official.nlp.bert import export_tfhub
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.tasks import sentence_prediction


class SentencePredictionTaskTest(tf.test.TestCase):

  def _run_task(self, config):
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()

    strategy = tf.distribute.get_strategy()
36
37
    dataset = strategy.experimental_distribute_datasets_from_function(
        functools.partial(task.build_inputs, config.train_data))
38
39
40
41
42
43
44
45

    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
    task.validation_step(next(iterator), model, metrics=metrics)

  def test_task(self):
    config = sentence_prediction.SentencePredictionConfig(
Hongkun Yu's avatar
Hongkun Yu committed
46
        init_checkpoint=self.get_temp_dir(),
47
        network=bert.BertPretrainerConfig(
Hongkun Yu's avatar
Hongkun Yu committed
48
49
            encoder=encoders.TransformerEncoderConfig(
                vocab_size=30522, num_layers=1),
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
            num_masked_tokens=0,
            cls_heads=[
                bert.ClsHeadConfig(
                    inner_dim=10, num_classes=3, name="sentence_prediction")
            ]),
        train_data=bert.BertSentencePredictionDataConfig(
            input_path="dummy", seq_length=128, global_batch_size=1))
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    dataset = task.build_inputs(config.train_data)

    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
    task.validation_step(next(iterator), model, metrics=metrics)

Hongkun Yu's avatar
Hongkun Yu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    # Saves a checkpoint.
    pretrain_cfg = bert.BertPretrainerConfig(
        encoder=encoders.TransformerEncoderConfig(
            vocab_size=30522, num_layers=1),
        num_masked_tokens=20,
        cls_heads=[
            bert.ClsHeadConfig(
                inner_dim=10, num_classes=3, name="next_sentence")
        ])
    pretrain_model = bert.instantiate_from_cfg(pretrain_cfg)
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
    ckpt.save(config.init_checkpoint)
    task.initialize(model)

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  def _export_bert_tfhub(self):
    bert_config = configs.BertConfig(
        vocab_size=30522,
        hidden_size=16,
        intermediate_size=32,
        max_position_embeddings=128,
        num_attention_heads=2,
        num_hidden_layers=1)
    _, encoder = export_tfhub.create_bert_model(bert_config)
    model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
    checkpoint = tf.train.Checkpoint(model=encoder)
    checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
    model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)

    vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
    with tf.io.gfile.GFile(vocab_file, "w") as f:
      f.write("dummy content")

    hub_destination = os.path.join(self.get_temp_dir(), "hub")
    export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path,
                                   hub_destination, vocab_file)
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = sentence_prediction.SentencePredictionConfig(
        hub_module_url=hub_module_url,
        network=bert.BertPretrainerConfig(
            encoders.TransformerEncoderConfig(vocab_size=30522, num_layers=1),
            num_masked_tokens=0,
            cls_heads=[
                bert.ClsHeadConfig(
                    inner_dim=10, num_classes=3, name="sentence_prediction")
            ]),
        train_data=bert.BertSentencePredictionDataConfig(
            input_path="dummy", seq_length=128, global_batch_size=10))
    self._run_task(config)


if __name__ == "__main__":
  tf.test.main()