question_answering_test.py 9.71 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
"""Tests for official.nlp.tasks.question_answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
17
import itertools
import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
import os
Hongkun Yu's avatar
Hongkun Yu committed
19

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
from absl.testing import parameterized
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
24
import tensorflow as tf

from official.nlp.configs import bert
from official.nlp.configs import encoders
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from official.nlp.data import question_answering_dataloader
Hongkun Yu's avatar
Hongkun Yu committed
26
from official.nlp.tasks import masked_lm
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
28
29
from official.nlp.tasks import question_answering


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
32
33

  def setUp(self):
    super(QuestionAnsweringTaskTest, self).setUp()
Hongkun Yu's avatar
Hongkun Yu committed
34
35
    self._encoder_config = encoders.EncoderConfig(
        bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
    self._train_data_config = question_answering_dataloader.QADataConfig(
Hongkun Yu's avatar
Hongkun Yu committed
37
        input_path="dummy", seq_length=128, global_batch_size=1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38

Hongkun Yu's avatar
Hongkun Yu committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    val_data = {
        "version":
            "1.1",
        "data": [{
            "paragraphs": [{
                "context":
                    "Sky is blue.",
                "qas": [{
                    "question":
                        "What is blue?",
                    "id":
                        "1234",
                    "answers": [{
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }]
                }]
            }]
        }]
    }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
67
68
69
70
71
72
73
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self, version_2_with_negative=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
75
    return question_answering_dataloader.QADataConfig(
        is_training=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
79
80
81
82
83
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=1,
        version_2_with_negative=version_2_with_negative,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
85
86
87
88

  def _run_task(self, config):
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
    task.initialize(model)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
91
92
    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
96
97
98
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
99
100
    # Mock that `logs` is from one replica.
    logs = {x: (logs[x],) for x in logs}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
102
103
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)
Chen Chen's avatar
Chen Chen committed
104
    model.save(os.path.join(self.get_temp_dir(), "saved_model"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105

Hongkun Yu's avatar
Hongkun Yu committed
106
107
108
109
110
  @parameterized.parameters(
      itertools.product(
          (False, True),
          ("WordPiece", "SentencePiece"),
      ))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
  def test_task(self, version_2_with_negative, tokenization):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
    # Saves a checkpoint.
Hongkun Yu's avatar
Hongkun Yu committed
113
    pretrain_cfg = bert.PretrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
115
116
117
118
        encoder=self._encoder_config,
        cls_heads=[
            bert.ClsHeadConfig(
                inner_dim=10, num_classes=3, name="next_sentence")
        ])
Hongkun Yu's avatar
Hongkun Yu committed
119
    pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
120
121
122
123
124
125
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
    saved_path = ckpt.save(self.get_temp_dir())

    config = question_answering.QuestionAnsweringConfig(
        init_checkpoint=saved_path,
Hongkun Yu's avatar
Hongkun Yu committed
126
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
128
129
130
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config(
            version_2_with_negative))
    self._run_task(config)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
131
132

  def _export_bert_tfhub(self):
133
134
135
136
137
138
139
    encoder = encoders.build_encoder(
        encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
    encoder_inputs_dict = {x.name: x for x in encoder.inputs}
    encoder_output_dict = encoder(encoder_inputs_dict)
    core_model = tf.keras.Model(
        inputs=encoder_inputs_dict, outputs=encoder_output_dict)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
    hub_destination = os.path.join(self.get_temp_dir(), "hub")
141
    core_model.save(hub_destination, include_optimizer=False, save_format="tf")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
142
143
144
145
146
147
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = question_answering.QuestionAnsweringConfig(
        hub_module_url=hub_module_url,
Hongkun Yu's avatar
Hongkun Yu committed
148
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
150
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
151
152
    self._run_task(config)

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  @parameterized.named_parameters(("squad1", False), ("squad2", True))
  def test_predict(self, version_2_with_negative):
    validation_data = self._get_validation_data_config(
        version_2_with_negative=version_2_with_negative)

    config = question_answering.QuestionAnsweringConfig(
        model=question_answering.ModelConfig(encoder=self._encoder_config),
        train_data=self._train_data_config,
        validation_data=validation_data)
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()

    all_predictions, all_nbest, scores_diff = question_answering.predict(
        task, validation_data, model)
    self.assertLen(all_predictions, 1)
    self.assertLen(all_nbest, 1)
    if version_2_with_negative:
      self.assertLen(scores_diff, 1)
    else:
      self.assertEmpty(scores_diff)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
174

Allen Wang's avatar
Allen Wang committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
class XLNetQuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(XLNetQuestionAnsweringTaskTest, self).setUp()
    self._encoder_config = encoders.EncoderConfig(
        type="xlnet",
        xlnet=encoders.XLNetEncoderConfig(vocab_size=30522, num_layers=1))
    self._train_data_config = question_answering_dataloader.QADataConfig(
        input_path="dummy", seq_length=128,
        global_batch_size=2, xlnet_format=True)

    val_data = {
        "version":
            "2.0",
        "data": [{
            "paragraphs": [{
                "context":
                    "Sky is blue.",
                "qas": [{
                    "question":
                        "What is blue?",
                    "id":
                        "1234",
                    "answers": [{
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }]
                }]
            }]
        }]
    }
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self):
    return question_answering_dataloader.QADataConfig(
        is_training=False,
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=2,
        version_2_with_negative=True,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True,
        xlnet_format=True)

  def _run_task(self, config):
    task = question_answering.XLNetQuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    task.initialize(model)

    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
    # Mock that `logs` is from one replica.
    logs = {x: (logs[x],) for x in logs}
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)
Chen Chen's avatar
Chen Chen committed
252
    self.assertNotIn("loss", metrics)
Allen Wang's avatar
Allen Wang committed
253
254
255
256
257
258
259
260
261
262
263

  def test_task(self):
    config = question_answering.XLNetQuestionAnsweringConfig(
        init_checkpoint="",
        n_best_size=5,
        model=question_answering.ModelConfig(encoder=self._encoder_config),
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
    self._run_task(config)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
264
265
if __name__ == "__main__":
  tf.test.main()