question_answering_test.py 10.2 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.question_answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
import itertools
import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
import os
Hongkun Yu's avatar
Hongkun Yu committed
20

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
from absl.testing import parameterized
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
23
24
25
26
27
import tensorflow as tf

from official.nlp.bert import configs
from official.nlp.bert import export_tfhub
from official.nlp.configs import bert
from official.nlp.configs import encoders
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.nlp.data import question_answering_dataloader
Hongkun Yu's avatar
Hongkun Yu committed
29
from official.nlp.tasks import masked_lm
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
31
32
from official.nlp.tasks import question_answering


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
35
36

  def setUp(self):
    super(QuestionAnsweringTaskTest, self).setUp()
Hongkun Yu's avatar
Hongkun Yu committed
37
38
    self._encoder_config = encoders.EncoderConfig(
        bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39
    self._train_data_config = question_answering_dataloader.QADataConfig(
Hongkun Yu's avatar
Hongkun Yu committed
40
        input_path="dummy", seq_length=128, global_batch_size=1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
41

Hongkun Yu's avatar
Hongkun Yu committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    val_data = {
        "version":
            "1.1",
        "data": [{
            "paragraphs": [{
                "context":
                    "Sky is blue.",
                "qas": [{
                    "question":
                        "What is blue?",
                    "id":
                        "1234",
                    "answers": [{
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }]
                }]
            }]
        }]
    }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
69
70
71
72
73
74
75
76
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self, version_2_with_negative=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78
    return question_answering_dataloader.QADataConfig(
        is_training=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80
81
82
83
84
85
86
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=1,
        version_2_with_negative=version_2_with_negative,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
88
89
90
91

  def _run_task(self, config):
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
    task.initialize(model)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
96
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
98
99
100
101
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
102
103
    # Mock that `logs` is from one replica.
    logs = {x: (logs[x],) for x in logs}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
105
106
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)
Chen Chen's avatar
Chen Chen committed
107
    model.save(os.path.join(self.get_temp_dir(), "saved_model"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108

Hongkun Yu's avatar
Hongkun Yu committed
109
110
111
112
113
  @parameterized.parameters(
      itertools.product(
          (False, True),
          ("WordPiece", "SentencePiece"),
      ))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
  def test_task(self, version_2_with_negative, tokenization):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
    # Saves a checkpoint.
Hongkun Yu's avatar
Hongkun Yu committed
116
    pretrain_cfg = bert.PretrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
117
118
119
120
121
        encoder=self._encoder_config,
        cls_heads=[
            bert.ClsHeadConfig(
                inner_dim=10, num_classes=3, name="next_sentence")
        ])
Hongkun Yu's avatar
Hongkun Yu committed
122
    pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
123
124
125
126
127
128
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
    saved_path = ckpt.save(self.get_temp_dir())

    config = question_answering.QuestionAnsweringConfig(
        init_checkpoint=saved_path,
Hongkun Yu's avatar
Hongkun Yu committed
129
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
130
131
132
133
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config(
            version_2_with_negative))
    self._run_task(config)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

  def _export_bert_tfhub(self):
    bert_config = configs.BertConfig(
        vocab_size=30522,
        hidden_size=16,
        intermediate_size=32,
        max_position_embeddings=128,
        num_attention_heads=2,
        num_hidden_layers=1)
    _, encoder = export_tfhub.create_bert_model(bert_config)
    model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
    checkpoint = tf.train.Checkpoint(model=encoder)
    checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
    model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)

    vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
    with tf.io.gfile.GFile(vocab_file, "w") as f:
      f.write("dummy content")

    hub_destination = os.path.join(self.get_temp_dir(), "hub")
    export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path,
                                   hub_destination, vocab_file)
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = question_answering.QuestionAnsweringConfig(
        hub_module_url=hub_module_url,
Hongkun Yu's avatar
Hongkun Yu committed
162
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
163
164
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
165
166
    self._run_task(config)

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  @parameterized.named_parameters(("squad1", False), ("squad2", True))
  def test_predict(self, version_2_with_negative):
    validation_data = self._get_validation_data_config(
        version_2_with_negative=version_2_with_negative)

    config = question_answering.QuestionAnsweringConfig(
        model=question_answering.ModelConfig(encoder=self._encoder_config),
        train_data=self._train_data_config,
        validation_data=validation_data)
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()

    all_predictions, all_nbest, scores_diff = question_answering.predict(
        task, validation_data, model)
    self.assertLen(all_predictions, 1)
    self.assertLen(all_nbest, 1)
    if version_2_with_negative:
      self.assertLen(scores_diff, 1)
    else:
      self.assertEmpty(scores_diff)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
188

Allen Wang's avatar
Allen Wang committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
class XLNetQuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(XLNetQuestionAnsweringTaskTest, self).setUp()
    self._encoder_config = encoders.EncoderConfig(
        type="xlnet",
        xlnet=encoders.XLNetEncoderConfig(vocab_size=30522, num_layers=1))
    self._train_data_config = question_answering_dataloader.QADataConfig(
        input_path="dummy", seq_length=128,
        global_batch_size=2, xlnet_format=True)

    val_data = {
        "version":
            "2.0",
        "data": [{
            "paragraphs": [{
                "context":
                    "Sky is blue.",
                "qas": [{
                    "question":
                        "What is blue?",
                    "id":
                        "1234",
                    "answers": [{
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }]
                }]
            }]
        }]
    }
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self):
    return question_answering_dataloader.QADataConfig(
        is_training=False,
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=2,
        version_2_with_negative=True,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True,
        xlnet_format=True)

  def _run_task(self, config):
    task = question_answering.XLNetQuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    task.initialize(model)

    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
    # Mock that `logs` is from one replica.
    logs = {x: (logs[x],) for x in logs}
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)

  def test_task(self):
    config = question_answering.XLNetQuestionAnsweringConfig(
        init_checkpoint="",
        n_best_size=5,
        model=question_answering.ModelConfig(encoder=self._encoder_config),
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
    self._run_task(config)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
277
278
if __name__ == "__main__":
  tf.test.main()