masked_lm.py 7.52 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
"""Masked language task."""
Hongkun Yu's avatar
Hongkun Yu committed
16

Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
import dataclasses
import tensorflow as tf

from official.core import base_task
21
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
from official.core import task_factory
Hongkun Yu's avatar
Hongkun Yu committed
23
from official.modeling import tf_utils
Hongkun Yu's avatar
Hongkun Yu committed
24
from official.nlp.configs import bert
Hongkun Yu's avatar
Hongkun Yu committed
25
from official.nlp.configs import encoders
Chen Chen's avatar
Chen Chen committed
26
from official.nlp.data import data_loader_factory
Hongkun Yu's avatar
Hongkun Yu committed
27
28
from official.nlp.modeling import layers
from official.nlp.modeling import models
Hongkun Yu's avatar
Hongkun Yu committed
29
30
31
32
33


@dataclasses.dataclass
class MaskedLMConfig(cfg.TaskConfig):
  """The model config."""
Hongkun Yu's avatar
Hongkun Yu committed
34
  model: bert.PretrainerConfig = bert.PretrainerConfig(cls_heads=[
Hongkun Yu's avatar
Hongkun Yu committed
35
36
37
      bert.ClsHeadConfig(
          inner_dim=768, num_classes=2, dropout_rate=0.1, name='next_sentence')
  ])
Le Hou's avatar
Le Hou committed
38
39
40
  # TODO(b/154564893): Mathematically, scale_loss should be True.
  # However, it works better with scale_loss being False.
  scale_loss: bool = False
Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
45
@task_factory.register_task_cls(MaskedLMConfig)
Hongkun Yu's avatar
Hongkun Yu committed
46
class MaskedLMTask(base_task.Task):
Hongkun Yu's avatar
Hongkun Yu committed
47
  """Task object for Mask language modeling."""
Hongkun Yu's avatar
Hongkun Yu committed
48

Frederick Liu's avatar
Frederick Liu committed
49
50
51
  def _build_encoder(self, encoder_cfg):
    return encoders.build_encoder(encoder_cfg)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
  def build_model(self, params=None):
Hongkun Yu's avatar
Hongkun Yu committed
53
54
    config = params or self.task_config.model
    encoder_cfg = config.encoder
Frederick Liu's avatar
Frederick Liu committed
55
    encoder_network = self._build_encoder(encoder_cfg)
Hongkun Yu's avatar
Hongkun Yu committed
56
57
58
59
60
61
62
63
64
    cls_heads = [
        layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads
    ] if config.cls_heads else []
    return models.BertPretrainerV2(
        mlm_activation=tf_utils.get_activation(config.mlm_activation),
        mlm_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.mlm_initializer_range),
        encoder_network=encoder_network,
        classification_heads=cls_heads)
Hongkun Yu's avatar
Hongkun Yu committed
65
66

  def build_losses(self,
67
                   labels,
Hongkun Yu's avatar
Hongkun Yu committed
68
69
70
                   model_outputs,
                   metrics,
                   aux_losses=None) -> tf.Tensor:
Terry Huang's avatar
Terry Huang committed
71
72
73
74
    with tf.name_scope('MaskedLMTask/losses'):
      metrics = dict([(metric.name, metric) for metric in metrics])
      lm_prediction_losses = tf.keras.losses.sparse_categorical_crossentropy(
          labels['masked_lm_ids'],
Chen Chen's avatar
Chen Chen committed
75
          tf.cast(model_outputs['mlm_logits'], tf.float32),
Terry Huang's avatar
Terry Huang committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
          from_logits=True)
      lm_label_weights = labels['masked_lm_weights']
      lm_numerator_loss = tf.reduce_sum(lm_prediction_losses *
                                        lm_label_weights)
      lm_denominator_loss = tf.reduce_sum(lm_label_weights)
      mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss)
      metrics['lm_example_loss'].update_state(mlm_loss)
      if 'next_sentence_labels' in labels:
        sentence_labels = labels['next_sentence_labels']
        sentence_outputs = tf.cast(
            model_outputs['next_sentence'], dtype=tf.float32)
        sentence_loss = tf.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(
                sentence_labels, sentence_outputs, from_logits=True))
        metrics['next_sentence_loss'].update_state(sentence_loss)
        total_loss = mlm_loss + sentence_loss
      else:
        total_loss = mlm_loss

      if aux_losses:
        total_loss += tf.add_n(aux_losses)
      return total_loss
Hongkun Yu's avatar
Hongkun Yu committed
98
99
100
101

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for pretraining."""
    if params.input_path == 'dummy':
102

Hongkun Yu's avatar
Hongkun Yu committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32)
        return dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids,
            masked_lm_positions=dummy_lm,
            masked_lm_ids=dummy_lm,
            masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32),
            next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32))

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

Chen Chen's avatar
Chen Chen committed
121
    return data_loader_factory.get_data_loader(params).load(input_context)
Hongkun Yu's avatar
Hongkun Yu committed
122
123
124
125

  def build_metrics(self, training=None):
    del training
    metrics = [
126
        tf.keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'),
Hongkun Yu's avatar
Hongkun Yu committed
127
128
129
130
131
132
133
134
135
136
        tf.keras.metrics.Mean(name='lm_example_loss')
    ]
    # TODO(hongkuny): rethink how to manage metrics creation with heads.
    if self.task_config.train_data.use_next_sentence_label:
      metrics.append(
          tf.keras.metrics.SparseCategoricalAccuracy(
              name='next_sentence_accuracy'))
      metrics.append(tf.keras.metrics.Mean(name='next_sentence_loss'))
    return metrics

137
  def process_metrics(self, metrics, labels, model_outputs):
Terry Huang's avatar
Terry Huang committed
138
139
140
141
    with tf.name_scope('MaskedLMTask/process_metrics'):
      metrics = dict([(metric.name, metric) for metric in metrics])
      if 'masked_lm_accuracy' in metrics:
        metrics['masked_lm_accuracy'].update_state(
Chen Chen's avatar
Chen Chen committed
142
            labels['masked_lm_ids'], model_outputs['mlm_logits'],
Terry Huang's avatar
Terry Huang committed
143
144
145
146
            labels['masked_lm_weights'])
      if 'next_sentence_accuracy' in metrics:
        metrics['next_sentence_accuracy'].update_state(
            labels['next_sentence_labels'], model_outputs['next_sentence'])
Hongkun Yu's avatar
Hongkun Yu committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

  def train_step(self, inputs, model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer, metrics):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    with tf.GradientTape() as tape:
      outputs = model(inputs, training=True)
      # Computes per-replica loss.
      loss = self.build_losses(
165
          labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
166
167
168
          model_outputs=outputs,
          metrics=metrics,
          aux_losses=model.losses)
Le Hou's avatar
Le Hou committed
169
170
171
172
      if self.task_config.scale_loss:
        # Scales loss as the default gradients allreduce performs sum inside the
        # optimizer.
        scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
Hongkun Yu's avatar
Hongkun Yu committed
173
    tvars = model.trainable_variables
Le Hou's avatar
Le Hou committed
174
175
176
177
    if self.task_config.scale_loss:
      grads = tape.gradient(scaled_loss, tvars)
    else:
      grads = tape.gradient(loss, tvars)
Hongkun Yu's avatar
Hongkun Yu committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    optimizer.apply_gradients(list(zip(grads, tvars)))
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}

  def validation_step(self, inputs, model: tf.keras.Model, metrics):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    outputs = self.inference_step(inputs, model)
    loss = self.build_losses(
195
        labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
196
197
198
199
200
        model_outputs=outputs,
        metrics=metrics,
        aux_losses=model.losses)
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}