benchmark_main.py 7.95 KB
Newer Older
Yanhui Liang's avatar
Yanhui Liang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Benchmark on the keras built-in application models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=g-bad-import-order
import numpy as np
from absl import app as absl_app
from absl import flags
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.keras_application_models import dataset
from official.keras_application_models import model_callbacks
from official.utils.flags import core as flags_core
from official.utils.logs import logger
31
from official.utils.misc import distribution_utils
Yanhui Liang's avatar
Yanhui Liang committed
32
33
34
35
36
37
38
39
40
41
42
43
44

# Define a dictionary that maps model names to their model classes inside Keras
MODELS = {
    "vgg16": tf.keras.applications.VGG16,
    "vgg19": tf.keras.applications.VGG19,
    "inceptionv3": tf.keras.applications.InceptionV3,
    "xception": tf.keras.applications.Xception,
    "resnet50": tf.keras.applications.ResNet50,
    "inceptionresnetv2": tf.keras.applications.InceptionResNetV2,
    "mobilenet": tf.keras.applications.MobileNet,
    "densenet121": tf.keras.applications.DenseNet121,
    "densenet169": tf.keras.applications.DenseNet169,
    "densenet201": tf.keras.applications.DenseNet201,
45
46
    "nasnetlarge": tf.keras.applications.NASNetLarge,
    "nasnetmobile": tf.keras.applications.NASNetMobile,
Yanhui Liang's avatar
Yanhui Liang committed
47
48
49
50
51
52
53
54
55
56
}


def run_keras_model_benchmark(_):
  """Run the benchmark on keras model."""
  # Ensure a valid model name was supplied via command line argument
  if FLAGS.model not in MODELS.keys():
    raise AssertionError("The --model command line argument should "
                         "be a key in the `MODELS` dictionary.")

57
58
59
60
61
  # Check if eager execution is enabled
  if FLAGS.eager:
    tf.logging.info("Eager execution is enabled...")
    tf.enable_eager_execution()

Yanhui Liang's avatar
Yanhui Liang committed
62
63
64
65
66
67
68
69
70
71
72
  # Load the model
  tf.logging.info("Benchmark on {} model...".format(FLAGS.model))
  keras_model = MODELS[FLAGS.model]
  model = keras_model(weights=None)

  # Get dataset
  dataset_name = "ImageNet"
  if FLAGS.use_synthetic_data:
    tf.logging.info("Using synthetic dataset...")
    dataset_name += "_Synthetic"
    train_dataset = dataset.generate_synthetic_input_dataset(
73
        FLAGS.model, FLAGS.batch_size)
Yanhui Liang's avatar
Yanhui Liang committed
74
    val_dataset = dataset.generate_synthetic_input_dataset(
75
        FLAGS.model, FLAGS.batch_size)
Yanhui Liang's avatar
Yanhui Liang committed
76
77
78
79
  else:
    raise ValueError("Only synthetic dataset is supported!")

  num_gpus = flags_core.get_num_gpus(FLAGS)
80
81
82
83
84
85
86
87
88
89

  distribution = None
  # Use distribution strategy
  if FLAGS.dist_strat:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=num_gpus)
  elif num_gpus > 1:
    # Run with multi_gpu_model
    # If eager execution is enabled, only one GPU is utilized even if multiple
    # GPUs are provided.
90
91
92
93
    if FLAGS.eager:
      tf.logging.warning(
          "{} GPUs are provided, but only one GPU is utilized as "
          "eager execution is enabled.".format(num_gpus))
Yanhui Liang's avatar
Yanhui Liang committed
94
95
    model = tf.keras.utils.multi_gpu_model(model, gpus=num_gpus)

96
97
98
99
  # Adam optimizer and some other optimizers doesn't work well with
  # distribution strategy (b/113076709)
  # Use GradientDescentOptimizer here
  optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
Yanhui Liang's avatar
Yanhui Liang committed
100
  model.compile(loss="categorical_crossentropy",
101
102
103
                optimizer=optimizer,
                metrics=["accuracy"],
                distribute=distribution)
Yanhui Liang's avatar
Yanhui Liang committed
104
105
106
107
108

  # Create benchmark logger for benchmark logging
  run_params = {
      "batch_size": FLAGS.batch_size,
      "synthetic_data": FLAGS.use_synthetic_data,
109
      "train_epochs": FLAGS.train_epochs,
110
111
      "num_train_images": FLAGS.num_train_images,
      "num_eval_images": FLAGS.num_eval_images,
Yanhui Liang's avatar
Yanhui Liang committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  }

  benchmark_logger = logger.get_benchmark_logger()
  benchmark_logger.log_run_info(
      model_name=FLAGS.model,
      dataset_name=dataset_name,
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)

  # Create callbacks that log metric values about the training and evaluation
  callbacks = model_callbacks.get_model_callbacks(
      FLAGS.callbacks,
      batch_size=FLAGS.batch_size,
      metric_logger=benchmark_logger)
  # Train and evaluate the model
  history = model.fit(
      train_dataset,
      epochs=FLAGS.train_epochs,
      callbacks=callbacks,
      validation_data=val_dataset,
132
133
      steps_per_epoch=int(np.ceil(FLAGS.num_train_images / FLAGS.batch_size)),
      validation_steps=int(np.ceil(FLAGS.num_eval_images / FLAGS.batch_size))
Yanhui Liang's avatar
Yanhui Liang committed
134
135
136
137
138
139
140
141
  )

  tf.logging.info("Logging the evaluation results...")
  for epoch in range(FLAGS.train_epochs):
    eval_results = {
        "accuracy": history.history["val_acc"][epoch],
        "loss": history.history["val_loss"][epoch],
        tf.GraphKeys.GLOBAL_STEP: (epoch + 1) * np.ceil(
142
            FLAGS.num_eval_images/FLAGS.batch_size)
Yanhui Liang's avatar
Yanhui Liang committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    }
    benchmark_logger.log_evaluation_result(eval_results)

  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()


def define_keras_benchmark_flags():
  """Add flags for keras built-in application models."""
  flags_core.define_base(hooks=False)
  flags_core.define_performance()
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      data_format="channels_last",
      use_synthetic_data=True,
      batch_size=32,
      train_epochs=2)

  flags.DEFINE_enum(
      name="model", default=None,
      enum_values=MODELS.keys(), case_sensitive=False,
      help=flags_core.help_wrap(
          "Model to be benchmarked."))

170
  flags.DEFINE_integer(
171
172
173
174
175
176
177
      name="num_train_images", default=1000,
      help=flags_core.help_wrap(
          "The number of synthetic images for training. The default value is "
          "1000."))

  flags.DEFINE_integer(
      name="num_eval_images", default=50,
178
      help=flags_core.help_wrap(
179
180
          "The number of synthetic images for evaluation. The default value is "
          "50."))
181
182
183
184
185
186
187

  flags.DEFINE_boolean(
      name="eager", default=False, help=flags_core.help_wrap(
          "To enable eager execution. Note that if eager execution is enabled, "
          "only one GPU is utilized even if multiple GPUs are provided and "
          "multi_gpu_model is used."))

188
189
190
191
192
193
  flags.DEFINE_boolean(
      name="dist_strat", default=False, help=flags_core.help_wrap(
          "To enable distribution strategy for model training and evaluation. "
          "Number of GPUs used for distribution strategy can be set by the "
          "argument --num_gpus."))

Yanhui Liang's avatar
Yanhui Liang committed
194
195
196
197
198
199
200
201
  flags.DEFINE_list(
      name="callbacks",
      default=["ExamplesPerSecondCallback", "LoggingMetricCallback"],
      help=flags_core.help_wrap(
          "A list of (case insensitive) strings to specify the names of "
          "callbacks. For example: `--callbacks ExamplesPerSecondCallback,"
          "LoggingMetricCallback`"))

202
203
204
205
206
207
208
209
210
  @flags.multi_flags_validator(
      ["eager", "dist_strat"],
      message="Both --eager and --dist_strat were set. Only one can be "
              "defined, as DistributionStrategy is not supported in Eager "
              "execution currently.")
  # pylint: disable=unused-variable
  def _check_eager_dist_strat(flag_dict):
    return not(flag_dict["eager"] and flag_dict["dist_strat"])

Yanhui Liang's avatar
Yanhui Liang committed
211
212
213
214
215

def main(_):
  with logger.benchmark_context(FLAGS):
    run_keras_model_benchmark(FLAGS)

216

Yanhui Liang's avatar
Yanhui Liang committed
217
218
219
220
221
if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  define_keras_benchmark_flags()
  FLAGS = flags.FLAGS
  absl_app.run(main)