benchmark_main.py 5.75 KB
Newer Older
Yanhui Liang's avatar
Yanhui Liang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Benchmark on the keras built-in application models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=g-bad-import-order
import numpy as np
from absl import app as absl_app
from absl import flags
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.keras_application_models import dataset
from official.keras_application_models import model_callbacks
from official.utils.flags import core as flags_core
from official.utils.logs import logger

# Define a dictionary that maps model names to their model classes inside Keras
MODELS = {
    "vgg16": tf.keras.applications.VGG16,
    "vgg19": tf.keras.applications.VGG19,
    "inceptionv3": tf.keras.applications.InceptionV3,
    "xception": tf.keras.applications.Xception,
    "resnet50": tf.keras.applications.ResNet50,
    "inceptionresnetv2": tf.keras.applications.InceptionResNetV2,
    "mobilenet": tf.keras.applications.MobileNet,
    "densenet121": tf.keras.applications.DenseNet121,
    "densenet169": tf.keras.applications.DenseNet169,
    "densenet201": tf.keras.applications.DenseNet201,
    # TODO(b/80431378)
    # "nasnetlarge": tf.keras.applications.NASNetLarge,
    # "nasnetmobile": tf.keras.applications.NASNetMobile,
}


def run_keras_model_benchmark(_):
  """Run the benchmark on keras model."""
  # Ensure a valid model name was supplied via command line argument
  if FLAGS.model not in MODELS.keys():
    raise AssertionError("The --model command line argument should "
                         "be a key in the `MODELS` dictionary.")

  # Load the model
  tf.logging.info("Benchmark on {} model...".format(FLAGS.model))
  keras_model = MODELS[FLAGS.model]
  model = keras_model(weights=None)

  # Get dataset
  dataset_name = "ImageNet"
  if FLAGS.use_synthetic_data:
    tf.logging.info("Using synthetic dataset...")
    dataset_name += "_Synthetic"
    train_num_images = FLAGS.batch_size
    val_num_images = FLAGS.batch_size
    train_dataset = dataset.generate_synthetic_input_dataset(
        FLAGS.model, train_num_images)
    val_dataset = dataset.generate_synthetic_input_dataset(
        FLAGS.model, val_num_images)
  else:
    raise ValueError("Only synthetic dataset is supported!")

  # If run with multiple GPUs
  num_gpus = flags_core.get_num_gpus(FLAGS)
  if num_gpus > 0:
    model = tf.keras.utils.multi_gpu_model(model, gpus=num_gpus)

  # Configure the model
  model.compile(loss="categorical_crossentropy",
                optimizer="sgd",
                metrics=["accuracy"])

  # Create benchmark logger for benchmark logging
  run_params = {
      "batch_size": FLAGS.batch_size,
      "synthetic_data": FLAGS.use_synthetic_data,
      "train_epochs": FLAGS.train_epochs
  }

  benchmark_logger = logger.get_benchmark_logger()
  benchmark_logger.log_run_info(
      model_name=FLAGS.model,
      dataset_name=dataset_name,
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)

  # Create callbacks that log metric values about the training and evaluation
  callbacks = model_callbacks.get_model_callbacks(
      FLAGS.callbacks,
      batch_size=FLAGS.batch_size,
      metric_logger=benchmark_logger)
  # Train and evaluate the model
  history = model.fit(
      train_dataset,
      epochs=FLAGS.train_epochs,
      callbacks=callbacks,
      validation_data=val_dataset,
      steps_per_epoch=int(np.ceil(train_num_images / FLAGS.batch_size)),
      validation_steps=int(np.ceil(val_num_images / FLAGS.batch_size))
  )

  tf.logging.info("Logging the evaluation results...")
  for epoch in range(FLAGS.train_epochs):
    eval_results = {
        "accuracy": history.history["val_acc"][epoch],
        "loss": history.history["val_loss"][epoch],
        tf.GraphKeys.GLOBAL_STEP: (epoch + 1) * np.ceil(
            train_num_images/FLAGS.batch_size)
    }
    benchmark_logger.log_evaluation_result(eval_results)

  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()


def define_keras_benchmark_flags():
  """Add flags for keras built-in application models."""
  flags_core.define_base(hooks=False)
  flags_core.define_performance()
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      data_format="channels_last",
      use_synthetic_data=True,
      batch_size=32,
      train_epochs=2)

  flags.DEFINE_enum(
      name="model", default=None,
      enum_values=MODELS.keys(), case_sensitive=False,
      help=flags_core.help_wrap(
          "Model to be benchmarked."))

  flags.DEFINE_list(
      name="callbacks",
      default=["ExamplesPerSecondCallback", "LoggingMetricCallback"],
      help=flags_core.help_wrap(
          "A list of (case insensitive) strings to specify the names of "
          "callbacks. For example: `--callbacks ExamplesPerSecondCallback,"
          "LoggingMetricCallback`"))


def main(_):
  with logger.benchmark_context(FLAGS):
    run_keras_model_benchmark(FLAGS)

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  define_keras_benchmark_flags()
  FLAGS = flags.FLAGS
  absl_app.run(main)